Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
ответ: 64 и 96 км/час.
Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
1) cos(sin(x) )
Заметим что : -π/2<-1<=sinx<=1<π/2
sin x лежит внутри интервала [-π/2 ;π/2]
Вывод:
тк сos(x)-четная функция,то на этом промежутке косинус принимает положительное значение : cos(sin(x) )>0 (0 не может быть тк |sin(x)|<π/2)
2) sin( 2+cos(x) )
-1<=cos(x)<=1
0<1<=2+cos(x)<=3<π
sin( 2+cos(x) ) лежит внутри промежутка [0;π]
Тк sin(π-x)=x , то это равносильно : [0;π/2]
Таким образом: sin( 2+cos(x) )>0 ( 0 не может быть 0<2+cosx<π)
3) сos(π+arcsin(x))
Из формулы приведения:
cos(π+arcsin(x))=-cos(arcsin(x) )
Заметим что область значений arcsin x ограничена:
arcsin(x)∈[-π/2;π/2]
Тогда по тем же рассуждениям что и в 1)
сos(arcsin(x))>=0 (исключением является то что здесь возможно равенство нулю ,тк arcsin(x)=+-π/2 (x=+-1) cos(+-π/2)=0 )
-сos(arcsin(x))<=0 → cos(π+arcsin(x))<=0