Решение: Обозначим объём вспашки всего поля за 1(единицу), а время вспашки всего поля Иваном за (х) часов, тогда время вспашки поля Григорием, согласно условия задачи, равно: (х+6) час Производительность работы Ивана в 1 час 1/х; Производительность работы Григория в 1 час 1/(х+6) А так как работая вместе они вспашут поле за 4 часа, то: 1 : [1/х/(х+6)]=4 1: [(х+6+х)/(х²+6х)]=4 1 : [(2х+6)/(х²+6х)]=4 х²+6х=(2х+6)*4 х²+6х=8х+24 х²+6х-8х-24=0 х²-2х-24=0 х1,2=(2+-D)/2*1 D=√(4-4*1*-24)=√(4+96)=√100=10 х1,2=(2+-10)/2 х1=(2+10)/2 х1=6 х2=(2-10)/2 х2=-4 - не соответствует условию задачи Время вспашки поля Иваном составляет 6 часов
Обозначим объём вспашки всего поля за 1(единицу), а время вспашки всего поля Иваном за (х) часов, тогда время вспашки поля Григорием, согласно условия задачи, равно: (х+6) час
Производительность работы Ивана в 1 час 1/х;
Производительность работы Григория в 1 час 1/(х+6)
А так как работая вместе они вспашут поле за 4 часа, то:
1 : [1/х/(х+6)]=4
1: [(х+6+х)/(х²+6х)]=4
1 : [(2х+6)/(х²+6х)]=4
х²+6х=(2х+6)*4
х²+6х=8х+24
х²+6х-8х-24=0
х²-2х-24=0
х1,2=(2+-D)/2*1
D=√(4-4*1*-24)=√(4+96)=√100=10
х1,2=(2+-10)/2
х1=(2+10)/2
х1=6
х2=(2-10)/2
х2=-4 - не соответствует условию задачи
Время вспашки поля Иваном составляет 6 часов
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b