Запишите предложение, подчеркните грамматические основы, дайте общую характеристику предложения.
Образец
Все теплее становятся дни, с юга скоро вернутся перелетные птицы, и самыми первыми прилетят грачи. (Сложное предложение с разными видами связи: сочинительной и бессоюзной; состоит из двух частей, соединенных сочинительной связью. Первая часть – БСП со значением перечисления, вторая часть предложение.)
[ __], [ __ ], и [ __].
1. Старик нетерпеливо крякает и, пожимаясь от едкой сырости, обходит локомотив, причем яркий свет двух фонарей на мгновение бьет ему в глаза, а ночь от этого становится для него еще чернее; он идет к полустанку.
2. Проходит минута в глубоком молчании; вагон не движется, стоит на месте, но из-под него начинают слышаться какие-то неопределенные звуки, похожие на скрип снега под полозьями; вагон вздрагивает, и звуки стихают.
3. Взглянув на конверт, француженка догадалась, в чем дело, и в первый раз за все время уроков ее лицо дрогнуло и холодное, деловое выражение исчезло.
4. Степан Иваныч ходил по улице, распахнувши на груди шубу, и ему досадно было, что никто не попадается навстречу и не видит на его груди Льва и Солнца.
5. Загремел рояль; грустный вальс из залы полетел в настежь открытые окна, и все почему-то вспомнили, что за окнами теперь весна, майский вечер.
w = m(X) / m(раствор)
Она часто задается в процентах:
w = m(X) / m(раствор) * 100%
1 случай.
Масса m1 кислоты в получившемся растворе: m1 = 2 w1 + 6 w2, где w1 и w2 - массовые доли кислоты в первом (2 кг) и втором (6 кг) растворе.
Массовая доля w3 кислоты в получившемся растворе равна по условию 0,36.
И она же равна w3 = m1 / (2 + 6) = m1 / 8 = (2 w1 + 6 w2) / 8 = 0.36
( [2+6] в знаменателе - это масса получившегося раствора [2 кг+6 кг])
2 случай
Возьмем для определенности равные массы, равные 1 кг.
Масса m2 кислоты в получившемся растворе: m2 = w1 + w2
Массовая доля w4 кислоты в полученном растворе равна по условию 0,32.
И она же равна w4 = m2 / 2 = (w1 + w2) / 2 = 0.32
(2 в знаменателе - это масса получившегося раствора [1 кг + 1 кг] )
Получаем систему уравнений относительно w1 и w2:
(2 w1 + 6 w2) / 8 = 0.36
(w1 + w2) / 2 = 0.32
2 w1 + 6 w2 = 2.88
w1 + w2 = 0.64
Из второго уравнения w1 = 0.64 - w2
Подставляем это выражение для w1 в первое уравнение:
2 (0,64 - w2) + 6 w2 = 2.88
1.28 - 2 w2 + 6 w2 = 2.88
1.28 + 4 w2 = 2.88
4 w2 = 1.6
w2 = 0.4 = 40%
Отсюда w1 = 0.64 - w2 = 0.64 - 0.4 = 0.24 = 24%
ответ: концентрация первого раствора - 24%, второго раствора - 40%
Проверка:
(2*0,24 + 6*0,4) / 8 = 0,36 = 36%
0,24 + 0,4 / 2 = 0,32 = 32%
Примечание.
Во втором случае можно брать не по одному килограмму, а по х килограммов раствора. Но это дела не меняет:
m2 = x w1 + x w2
w4 = m2 / (x + x) = (x w1 + x w2) / 2x = x(w1 + w2) / 2x = (w1 + w2) / 2
(х + х) - это масса получившегося раствора.
Как видим, х сокращается, и получаем тот же результат:
w4 = (w1 + w2) / 2
За 3 часа автомобиль проехал 3х км.
Трактор до момента встречи ехал на 15 мин. меньше.
3 часа - 15 мин = 2 часа 45 мин =2,75 часа и
проехал путь, равный 2,75у км.
Транспортные средства встретились, значит проехали путь от А до В.
(3х+2,75у ) км - расстояние от А до В.
Автомобиль проехал (6х+5,5у) со скоростью х км в час и затратил на путь туда и обратно
(6х+5,5y)/x часов.
Трактор проехал (3х+2,75у) со скоростью у км в час и затратил
(3х+2,75у)/у часов.
По условию трактор находился в пути на 15 мин =1/4 часа меньше.
Составляем уравнение:
((6х+5,5y)/x) - ((3х+2,75у)/у)= 1/4 .
Делим каждое слагаемое числителя первой дроби на х, каждое слагаемое числителя второй дроби на у:
6+5,5 (у/х) - 3(х/у) -2,75=0,25.
Пусть х/у=t, тогда у/х = 1/t
3t-(5,5/t)-3=0
3t²-3t-5,5=0
6t²-6t-11=0
D=36+264=300
t=(6+√300)/12=(6+10√3)/12=(3+5√3)/6
t=(6-√300)/12 <0 и не удовлетворяет условию задачи
t=x/y=(3+5√3)/6≈1,94 раза