а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.б) уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
Объяснение:
Уравнение имеет один корень при D = 0.
a) D = a^2 - 100
a^2 = 100
a = -10 или a = 10
Найдём этот корень:
5x^2 - 10x + 5 = 0 или 5x^2 + 10x + 5 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
б) 3x^2 - ax + 3 = 0
D = a^2 - 36
a^2 = 36
a = 6 или а = -6
3x^2 - 6x + 3 = 0 или 3x^2 + 6x + 3 = 0
ответ: уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.б) уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
Объяснение:
Уравнение имеет один корень при D = 0.
a) D = a^2 - 100
a^2 = 100
a = -10 или a = 10
Найдём этот корень:
5x^2 - 10x + 5 = 0 или 5x^2 + 10x + 5 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
б) 3x^2 - ax + 3 = 0
D = a^2 - 36
a^2 = 36
a = 6 или а = -6
Найдём этот корень:
3x^2 - 6x + 3 = 0 или 3x^2 + 6x + 3 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
xy = - 3
x = 6 - y
y( 6 - y ) = - 3
6y - y^2 = - 3
y^2 - 6y - 3 = 0
D = 36 + 12 = 48
√ D = √ 48 = 4 √ 3
y1 = ( 6 + 4 √ 3 ) : 2 = 3 + 2 √ 3
y2 = 3 - 2 √ 3
x = 6 - y
x1 = 6 - ( 3 + 2 √ 3 ) = 3 - 2 √ 3
x2 = 6 - ( 3 - 2 √ 3 ) = 3 + 2 √ 3
x^4 = ?
1) ( 3 - 2 √ 3 )^4 = ?
( 3 - 2 √ 3 )^2 = 9 - 12*3 + 4*3 = 9 - 36 + 12 = - 15
( 3 - 2 √ 3 )^4 = - 15 * ( - 15 ) = 225
2) ( 3 + 2 √ 3 )^2 = 9 + 12*3 + 4*3 = 9 + 36 + 12 = 57
( 3 - 2 √ 3 )^4 = 57 * 57 = 3249
1) X^4 + y^4 = 225 + 3249 = 3474
2) X^4 + y^4 = 57 + 225 = 282