А (n+2)/n!-(3n+2)/(n+1)! =(n+2)/n!-(3n+2)/[n!(n+1)]= =(n²+n+2n+2-3n-2)/[n!(n+1)]=n²/(n+1)! Б 1/(k-1)!-k/(k+1)!=1/(k-1)!-k/[(k-1)!*k*(n+1)]= =(k²+k-k)/(k+1)!=k²/(k+1)! В 1/(k-2)!-(k^3+k)/(k+1)! =1/(k-2)!-(k³+k)/[(k-2)!(k-1)k(k+1)]= =(k³-k-k³-k)/(k+1)!=-2k/(k+1)!
(n+2)/n!-(3n+2)/(n+1)! =(n+2)/n!-(3n+2)/[n!(n+1)]=
=(n²+n+2n+2-3n-2)/[n!(n+1)]=n²/(n+1)!
Б
1/(k-1)!-k/(k+1)!=1/(k-1)!-k/[(k-1)!*k*(n+1)]=
=(k²+k-k)/(k+1)!=k²/(k+1)!
В
1/(k-2)!-(k^3+k)/(k+1)! =1/(k-2)!-(k³+k)/[(k-2)!(k-1)k(k+1)]=
=(k³-k-k³-k)/(k+1)!=-2k/(k+1)!