Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
A(2 ; 4) 4=2^2 точка А принадлежит B(3 ;6) 6<3^2 точка B не принадлежит C(4 ; 8) 8<4^2 точка C не принадлежит D(-3 ; 9) 9= (-3)^2 точка D принадлежит R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит
ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
B(3 ;6) 6<3^2 точка B не принадлежит
C(4 ; 8) 8<4^2 точка C не принадлежит
D(-3 ; 9) 9= (-3)^2 точка D принадлежит
R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит
S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит
E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит
F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит
K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит
P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит
L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит
M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит