Пусть х - весь путь, а у - скорость первого автомоболиста, тогда:
х/у = 0,5х/(у-6) + 0,5х/56,
где
х/у - время движения первого автомобилиста,
0,5х/(у-6) + 0,5х/56 - время движения второго автомобилиста, который первую часть пути (0,5х) двигался со скоростью (у-6) км/ч, а вторую часть пути (0,5х) двигался со скоростью 56 км/ч
Разделим обе части уравнения на х и найдём у:
1/у = 0,5/(у-6) + 0,5/56
1/у = (28+0,5у-3)/[56·(у-6)]
1/у = (28+0,5у-3)/(56у-336)
Согласно освновному свойству пропорции, произведение средних равно прооизведению крайних:
56у - 336 = 28у +0,5у²-3у
0,5у²-31у+336=0
у²-62у+672=0
Согласно теореме Виета, корни приведённого квадратного уравнения равны половине второго коэффициента, взятого с противоположным знаком, плюс-минус корень квадратный из этой половины без свободного члена:
у₁,₂ = 31±√(31² - 672) = 31±√289 = 31±17
Меньшее значение у₁ = 31 - 17 = 14 км/ч отбрасываем, т.к. оно меньше 45 км/ч. Принимаем: у₂ = 31+17 = 48 км/ч
48 км/ч
Объяснение:
Решение
Пусть х - весь путь, а у - скорость первого автомоболиста, тогда:
х/у = 0,5х/(у-6) + 0,5х/56,
где
х/у - время движения первого автомобилиста,
0,5х/(у-6) + 0,5х/56 - время движения второго автомобилиста, который первую часть пути (0,5х) двигался со скоростью (у-6) км/ч, а вторую часть пути (0,5х) двигался со скоростью 56 км/ч
Разделим обе части уравнения на х и найдём у:
1/у = 0,5/(у-6) + 0,5/56
1/у = (28+0,5у-3)/[56·(у-6)]
1/у = (28+0,5у-3)/(56у-336)
Согласно освновному свойству пропорции, произведение средних равно прооизведению крайних:
56у - 336 = 28у +0,5у²-3у
0,5у²-31у+336=0
у²-62у+672=0
Согласно теореме Виета, корни приведённого квадратного уравнения равны половине второго коэффициента, взятого с противоположным знаком, плюс-минус корень квадратный из этой половины без свободного члена:
у₁,₂ = 31±√(31² - 672) = 31±√289 = 31±17
Меньшее значение у₁ = 31 - 17 = 14 км/ч отбрасываем, т.к. оно меньше 45 км/ч. Принимаем: у₂ = 31+17 = 48 км/ч
ответ: 48 км/ч
4 корня
Объяснение:
2sin(3x)*sin(x) + cos(2x) + 2 = 0; x € [-Π/2; 3Π/2]
Формулы:
sin(3x) = 3sin(x) - 4sin^3(x)
cos(2x) = 1 - 2sin^2(x)
Подставляем формулы в уравнение:
2sin(x)*(3sin(x) - 4sin^3(x)) + 1 - 2sin^2(x) + 2 = 0
6sin^2(x) - 8sin^4(x) - 2sin^2(x) + 3 = 0
8sin^4(x) - 4sin^2(x) - 3 = 0
Получили биквадратное уравнение относительно sin(x).
Сделаем замену sin^2(x) = y ≥ 0 при любом х.
8y^2 - 4y - 3 = 0
D/4 = 2^2 - 8*(-3) = 4 + 24 = 28 = (2√7)^2
y1 = (2 - 2√7)/8 < 0 - не подходит.
y2 = (2 + 2√7)/8 = (1 + √7)/4
Возвращаемся к переменной х
sin^2(x) = (1+√7)/4
1) sin x = -√((1+√7)/4)
x1 = -arcsin [√((1+√7)/4)] + 2Πn, n € Z
x2 = π + arcsin[√((1+√7)/4)] + 2Πn, n € Z
2) sin x = √((1+√7)/4)
x3 = arcsin[√((1+√7)/4)] + 2Πk, k € Z
x4 = π - arcsin[√((1+√7)/4)] + 2Πk, k € Z
Теперь нам надо найти количество корней на промежутке [-Π/2; 3Π/2]
Найдем, в какую четверть попадает каждый из корней. Обозначим:
t = √((1+√7)/4) ≈ 0,95
Можно и не вычислять, самое главное, что t € (0; 1)
arcsin(0,95) ≈ 72° = 2Π/5
Тоже можно не вычислять, главное, что arcsin t € (0, Π/2)
x1 = -arcsin t € (-Π/2; 0)
x2 = Π + arcsin t € (Π; 3Π/2)
x3 = arcsin t € (0; Π/2)
x4 = Π - arcsin t € (Π/2; Π)
Как видим, все 4 корня попадают во все 4 четверти, то есть в промежуток.