В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Nigira
Nigira
04.06.2021 09:02 •  Алгебра

Запишите выражение для нахождения суммы первых n членов прогрессии (bn) если : а)b1=1,q=5; б)b1=1,q=1/3 ' решить '

Показать ответ
Ответ:
malina78911
malina78911
11.06.2020 23:27

Сумма первых n членов геометрической прогрессии: S_n=\dfrac{b_1(1-q^n)}{1-q}


a) S_n=\dfrac{1\cdot(1-5^n)}{1-5}=\dfrac{5^n-1}{4}=-\dfrac{1}{4}+\dfrac{5^n}{4}


б) S_n=\dfrac{1\cdot(1-(\frac{1}{3})^n)}{1-\frac{1}{3}}=\dfrac{3\cdot(1-\frac{1}{3^n})}{2}=\dfrac{3-\frac{1}{3^{n-1}}}{2}=\dfrac{3}{2}-\dfrac{1}{2\cdot 3^{n-1}}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота