Запишите выражение,как многочлен стандартного вида и опре-делите степень полученного многочлена. а) 2∙⁴∙³∙∙3⁶; б)(+3)²; в)(−2)³; г)0,5∙(−7)∙8²+(−0,6)∙∙3². 2(2). Замените выражение p так, чтобы получившийся после приведе-ния подобных членов многочлен 2²−5+²+7²+3−5²+9²+2+ не содержал переменной .
Рассмотрим сортировку груш относительно пакетов.
Расставим пакеты в ряд так ,чтобы количество груш пакетов слева направо шли по возрастанию. Эти количества отличаются,как минимум на 1 (так как в пакетах различное число груш).
Пусть количество груш в первом пакете - х
Тогда,во втором х+1.В третьем х+2 и так далее
Надо найти количество пакетов . Оказывается,пакетов не более 11,так как общее различие груш от первого пакета составляет в таком случае
не менее
0+1+2+3+4+5+6+7+8+9+10=55 груш(так как между собой пакеты различаются хотя бы на 1 ,а отличие от первого пакеты увеличиваются на 1 и следующее добавление 11 приведет к превышению заданной суммы)
Но 11 не является делителем 60, а 12 мы не можем взять ,так как пакетов не более 11,ближайшее количество пакетов 10,чтобы мы могли разложить грушы и яблоки(в таком случае в каждом пакете по 6 яблок ,и например в первом пакете 0 груш,во втором 1,в третьем-3,в четвертом-2,
в пятом-4,в шестом-6,в седьмом -7,в восьмом -8,в девятом-9,в десятом-20)
ответ:Г)10
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку
F(0)=10 - наименьшее
F(3)=3³+9·3²-24·3+10=46 - наибольшее