Заполни пропуски в решении. выясни какое из уравнений (х-5)(х-3)=0 или х-5 является следствием. Решение : Первое уравнение имеет корни х1=5 и х2=, а второй единиственный корень х= Поэтому первое уравнение является следствием второго
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Для того, чтобы билет был интересным, нужно, чтобы в его номере присутствовали числа 05, 16, 27, 38, 49, 50, 61, 72, 83, 94 Всего 10 пар. Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так: ab** *ab* **ab где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов. Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук. Тогда вероятность вытянуть такой билет составит
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
05, 16, 27, 38, 49, 50, 61, 72, 83, 94
Всего 10 пар.
Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так:
ab**
*ab*
**ab
где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов.
Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук.
Тогда вероятность вытянуть такой билет составит