Решение: Обозначим за х-количество изюма; за у- количество груш; за z- количество чернослива Тогда согласно условию задачи: Составим уравнения: у=х+100 z/3=у х+у+z=1000 Решим данную систему уравнений: приводим к тому, чтобы в третьем уравнении была одна переменная: х-известна; у=х+100 z=3у подтавим в третье уравнение, получим; х+х+100+3у=1000 Подставим вместо у, известное нам: у=х+100 Тогда: х+х+100+3*(х+100)=1000 х+х+100+3х+300=1000 5х=600 х=120г (количество изюма) у=120+100=220г (количество груш) z=3*220=660г (количество чернослива)
Обозначим за х-количество изюма;
за у- количество груш;
за z- количество чернослива
Тогда согласно условию задачи:
Составим уравнения:
у=х+100
z/3=у
х+у+z=1000
Решим данную систему уравнений:
приводим к тому, чтобы в третьем уравнении была одна переменная:
х-известна;
у=х+100
z=3у
подтавим в третье уравнение, получим;
х+х+100+3у=1000
Подставим вместо у, известное нам: у=х+100
Тогда:
х+х+100+3*(х+100)=1000
х+х+100+3х+300=1000
5х=600
х=120г (количество изюма)
у=120+100=220г (количество груш)
z=3*220=660г (количество чернослива)
Проверка: 120+220+660=1000(г)
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24