Заполните «таблицу-синтез». выберите из слова четырнадцатого» ключе-
ые понятия и запишите их в первой графе. затем заполните вторую графу
таблицы, объясняя значение этих слов. в третьей графе приме-
ры из текста.
ключевые слова
толкование
выписки из текста
|x²- x| +|2x-3| < x ;
|x(x-1)| +|2x-3| < x * * * ясно x >0 * * *
- - + - + +
0 1 1,5
Совокупность систем
a)
{0< x < 1 ; {0 < x < 1; { 0< x < 1 ;
{-x² +x -2x +3 < x . { x² +2x - 3 > 0 . { x ∈( -∞; -3) ∪ ( 1;∞).
x ∈ ∅ .
б)
{1≤ x < 1,5 ; { 1≤ x < 1,5 ; {1≤ x < 1,5 ;
{x² - x -2x +3 < x . { x² - 4x + 3 < 0 . { x ∈( 1 ; 3).
x ∈ ( 1;1,5) .
в)
{x ≥ 1,5 ; { x ≥ 1,5 ; { x ≥ 1,5 ;
{x² - x +2x -3 < x . { x² - 3 < 0 . { x ∈(-√3; √3).
x ∈ [1,5 ; √3) .
* * * x ∈ ( 1;1,5) ∪ [1,5 ; √3) = ( 1 ; √3) . * * *
ответ : x ∈ ( 1 ; √3) .
арифметику можно проверить
x^3+bx^2+сx+d=0
c целыми коэффициентами рациональными корнями могут быть только числа являющиеся делителями свободного члена d
Проверяем для первого уравнения свободный член -6 - его делители +-1 +-2 +-3 +-6
подставляем эти x в уравнение
1 2 3 - являются корнями
x^3-6x^2+11x-6=(x-1)(x-2)(x-3)=0
Первый ответ:
x=1 x=2 x=3
Для второго уравнения свободный член -12 - его делители +-1 +-2 +-3 +-4 +-6 +-12
подставляем эти x в уравнение
-4 -3 1 - являются корнями
x^3+6x^2+5x-12=(x+4)(x+3)(x-1)=0
Второй ответ
x= -4 x= -3 x=1