Построение графика функции методом дифференциального исчисления
Математика онлайн Математический анализ
1) Область определения функции. Точки разрыва функции.
2) Четность или нечетность функции.
y(-x)=
Функция общего вида
3) Периодичность функции.
4) Точки пересечения кривой с осями координат.
Пересечение с осью 0Y
x=0, y=
Пересечение с осью 0X
y=0
3·x4+4·x3+1=0
Нет пересечений.
5) Исследование на экстремум.
y = 3*x^4+4*x^3+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 12·x3+12·x2
или
f'(x)=12·x2·(x+1)
Находим нули функции. Для этого приравниваем производную к нулю
x2·(x+1) = 0
Откуда:
x1 = 0
x2 = -1
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
Построение графика функции методом дифференциального исчисления
Математика онлайн Математический анализ
1) Область определения функции. Точки разрыва функции.
2) Четность или нечетность функции.
y(-x)=
Функция общего вида
3) Периодичность функции.
4) Точки пересечения кривой с осями координат.
Пересечение с осью 0Y
x=0, y=
Пересечение с осью 0X
y=0
3·x4+4·x3+1=0
Нет пересечений.
5) Исследование на экстремум.
y = 3*x^4+4*x^3+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 12·x3+12·x2
или
f'(x)=12·x2·(x+1)
Находим нули функции. Для этого приравниваем производную к нулю
x2·(x+1) = 0
Откуда:
x1 = 0
x2 = -1
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение: