В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
yaremhykv04
yaremhykv04
20.03.2020 03:22 •  Алгебра

Заранее найти точку пересечения высоты аh и медианы вм в треугольнике с вершинами а(-3; 5; -4) в(-4; -2; 2) с(-2; -4; -2)

Показать ответ
Ответ:
gahakadbobo22
gahakadbobo22
05.10.2020 00:04
Сначала определим тип треугольника, найдя длины его сторон.
1) Расчет длин сторон:  d = √((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
АВ = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²) = √ 86 ≈ 9.273618495, 
BC = √((Хc-Хв)²+(Ус-Ув)²+(Zс-Zв)²)  = √24 ≈ 4.898979486, 
AC = √((Хc-Хa)²+(Ус-Уa)²+(Zс-Zа)²)  = √86 ≈ 9.273618495.
Треугольник равнобедренный, высота АН является и медианой.
Медианы, пересекаясь, точкой О пересечения делятся в отношении 2:1 от вершины.
Находим координаты точки Н как середины отрезка ВС.
Н((-4-2)/2=-3; (-2-4)/2=-3; (2-2)/2=0) = (-3; -3; 0).
Точка А(-3; 5; -4)
Находим координаты точки О при деления отрезка АН в отношении 2:1 (λ=2).
Точка О       х           у            z             λ
                  -3      -0.333     -1.333         2  
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота