В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
arushikir
arushikir
11.02.2023 20:09 •  Алгебра

Заранее только 1 вариант и Часть-А

Показать ответ
Ответ:
samira2314
samira2314
24.02.2021 22:17

 

 

Чтобы найти экстремумы функции (пояснять не буду, что это), нужно извлечь производную от функции и приравлять к нулю:

(1/3*x^3-4x)'=x^2-4

 x^2-4=0

x=2

x=-2

Чертим числовую прямую и ставим на ней точки +2 и -2.

Рисуем как ведет себя функция на этих трех промежутках (начиная справа влево), на первом вверх, втором вниз, третьем вверх.

Наибольшее значение, когда функция сменяеться вверх-вниз, значит наибольшее значение в точе -2, значит наибольшее значение равно f(-2)=-8/3+8=16/3

Наименьшее наоборот... В точке 2, f(2)=8/3-8=-16/3

Это если в общем виде решать!

Но нам дан определенный отрезон, значит мы должны просчитать значение функции еще и на концах отрезка и только после этого сможем дать определенный ответ.

f(0)=0, f(3)=9-12=-3

ответ:max:16/3, min:-16/3

Я мог где-то ошибиться в расчетах проверить, если вопросы пишите в ЛС, всегда буду рад пояснить...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0(0 оценок)
Ответ:
Ирина132435
Ирина132435
04.11.2022 04:14
Y=-8x/(x²+4).
1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось.
2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет.
3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0.
4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет.
5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота