де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
V=Sосн*H Sосн=(1/2)*d₁*d₂ d₁=6√3 большая диагональ призмы составляет с основанием угол 30°. прямоугольный треугольник: гипотенузы - большая диагональ призмы катет - большая диагональ основания призмы d₁=6√3 катет - высота призмы H угол между катетом d₁ и гипотенузой 30°. tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°. прямоугольный треугольник: гипотенуза - меньшая диагональ призмы катет - меньшая диагональ основания d₂ катет - высота призмы Н=8 угол между катетом d₂ и гипотенузой равен 45°, => d₂=H, =>d₂=6 V=(1/2)*6√3*6*6 V=108√3
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює
Sосн=(1/2)*d₁*d₂
d₁=6√3
большая диагональ призмы составляет с основанием угол 30°.
прямоугольный треугольник:
гипотенузы - большая диагональ призмы
катет - большая диагональ основания призмы d₁=6√3
катет - высота призмы H
угол между катетом d₁ и гипотенузой 30°.
tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°.
прямоугольный треугольник:
гипотенуза - меньшая диагональ призмы
катет - меньшая диагональ основания d₂
катет - высота призмы Н=8
угол между катетом d₂ и гипотенузой равен 45°, =>
d₂=H, =>d₂=6
V=(1/2)*6√3*6*6
V=108√3