В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Shavelko
Shavelko
03.11.2022 12:05 •  Алгебра

Здесь один листок, но 2 фотографии,(решение+ответ

Показать ответ
Ответ:
bogdanoleksenkozo87a
bogdanoleksenkozo87a
02.08.2020 21:12
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
0,0(0 оценок)
Ответ:
datkinnurikozrhbf
datkinnurikozrhbf
17.01.2023 05:17

1)  Решение через дискриминант .

21+10t-t^2=0\ \ \ \to \ \ \ \ \ t^2-10t-21=0D=b^2-4ac=10^2+4\cdot 21=184=2\sqrt{46}t_{1,2}=\dfrac{10\pm \sqrt{184}}{2}\ \ ,\ \ t_1=5-\sqrt{46}\ ,\ \ t_2=5+\sqrt{46}

2)  Решение с выделения полного квадрата .

21+10t-t^2=-(t^2-10t-21)=-\Big(\, (t-5)^2-25-21\Big)==-(t-5)^2+46-(t-5)^2+46=0\ \ \ \Rightarrow \ \ \ (\sqrt{46})^2-(t-5)^2=0\ \ ,(\sqrt{46}-t+5)(\sqrt{46}+t-5)=0a)\ \ \sqrt{46}-t+5=0\ \ \ \to \ \ \ t=5+\sqrt{46}\approx 11,8b)\ \ \sqrt{46}+t-5=0\ \ \ \to \ \ \ t=5-\sqrt{46}\approx -1,8

3) Решение с теоремы Виета.

-t^2+10t+21=0\ \ \ \Rightarrow \ \ \ \left\{\begin{array}{l}t_1+t_2=10\\t_1\cdot t_2=-21\end{array}\righ\ \ \left\{\begin{array}{l}t_2=10-t_1\\t_1\cdot (10-t_1)=-21\end{array}\righ

\left\{\begin{array}{l}t_2=10-t_1\\10t_1-t_1^2=-21\end{array}\righ\ \ \left\{\begin{array}{l}t_2=10-t_1\\t_1^2-10t_1-21=0\end{array}\righ

Второе уравнение фактически получили такое же, как и было задано . Подобрать корни без решения уравнения через дискриминант в этом случае сложно . Поэтому реально работают первые два решения .

P.S.  Легко подобрать корни по теореме Виета , например, для такого уравнения  x^2+3x-10=0\ \ ,\ \ x_1=2\ ,\ x_2=-5\ \ (x_1\cdot x_2=-10\ ,\ x_1+x_2=-3\ )  .

4) Графический решения уравнения . Построить параболу и найти точки пересечения с осью ОХ . Но в данном случае точные значения найти практически невозможно. Только приближённые значения :  x\approx -1,8\ \ ,\ \ x_2\approx 11,8  .


Напишите все , которыми можно решить уравнение ниже 21+10t-t^2=0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота