значения обратных тригонометрических функций можно определить из таблицы значений тригонометрических функций с учетом области значений арккосинуса. по косинусу находим угол
например arccos 0 это угол cos которого =0 из области значений [0;п] это угол п/2 ⇒ arccos0=п/2 и так далее
таблицы значений тригонометрических функций есть в сети и учебниках
Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
Объяснение:
значения обратных тригонометрических функций можно определить из таблицы значений тригонометрических функций с учетом области значений арккосинуса. по косинусу находим угол
например arccos 0 это угол cos которого =0 из области значений [0;п] это угол п/2 ⇒ arccos0=п/2 и так далее
таблицы значений тригонометрических функций есть в сети и учебниках
а)
область значений arccos(x)=[0;п]
arccos0+2arccos(-1/2)+arccos(√2)/2= (п/2) + (2п/3)+(п/4)=17п/12
б)
область значений arcsin(x)=[-п/2;п/2]
arcsin(-1/√2)+arcsin1-arcsin(√3)/2=(-п/4)+(п/2)-(п/3)=-п/12
если тебе не сложно поставь 5-ку и кликни лайк
№2
Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
3х-32=х+32
3х-х=32+32
2х=64
х=32 книги на второй полке
32*3=96 книг на первой полке
ответ:96 книг на первой полке,
32 книги на второй полке
Объяснение: