а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше
Посчитаем, сколько всего существует четырехзначных чисел. Минимальное из них 1000, максимальное 9999. 9999 - 999 = 9000 чисел. Найдем количество чисел, у которых в записи все цифры четные. На первой позиции у них стоит цифра 2, 4, 6, 8 - 4 варианта выбора. На второй, третьей и четвертой позициях - любая из 5 цифр: 0, 2, 4, 6, 8 - по 5 вариантов. Всего комбинаций 4 * 5 * 5 * 5 = 20 * 25 = 500. 9000 - 500 = 8500 чисел. ответ: Существует 8500 четырехзначных чисел, у которых хотя бы одна цифра в записи нечетная.
а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше
Минимальное из них 1000, максимальное 9999.
9999 - 999 = 9000 чисел.
Найдем количество чисел, у которых в записи все цифры четные.
На первой позиции у них стоит цифра 2, 4, 6, 8 - 4 варианта выбора.
На второй, третьей и четвертой позициях - любая из 5 цифр: 0, 2, 4, 6, 8 - по 5 вариантов.
Всего комбинаций 4 * 5 * 5 * 5 = 20 * 25 = 500.
9000 - 500 = 8500 чисел.
ответ: Существует 8500 четырехзначных чисел, у которых хотя бы одна цифра в записи нечетная.