Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
1)из первых двух уравнений:
z=7-2x-y
z=8-x-2y приравниваем 7-2x-y=8-x-2y , выразим y (можно было бы и выразить х, как кому удобнее) приводим подобные и получаем у=1+х
2) из 3 ур-я выражаем z : 2z= 9-x-y, z=(9-x-y)/2 в это уравнение вместо у подставляем значение которое у нас получилось в 1 пункте: z= 4-x
3) из первого ур-я выражаем z : z=7-2x-y сюда вместо у подставляем значение которое получили в пункте 1, получается z=7-2x-1-x=6-3x
4)приравниваем пункт 2 и 3, получается 6-3x=4-x, х=1
5) мы нашли что у=1+х=1+1=2
6) мы нашли что z=4-x=4-1=3
проверка
в ур-е 1 подставим полученные значения
2*1+2+3=7
7=7
ответ:a<-1/12
Объяснение:
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
D=1+12a<0 <=> a<-1/12