В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
2346573920316
2346573920316
19.12.2022 14:46 •  Алгебра

Желательно решение отправить на фотографии.​


Желательно решение отправить на фотографии.​

Показать ответ
Ответ:
arisha70
arisha70
15.11.2022 01:29

Находим частные производные:

∂z/∂x=6y-18x+4

∂z/∂y=6x-18y+4

Находим стационарные точки:

{∂z/∂x=0  ⇒ 6y-18x+4=0

{∂z/∂y=0 ⇒ 6x-18y+4 =0

Решаем систему:

{ 6y-18x+4=0 ( умножаем на 3)

{6x-18y+4 =0

{ 18y-54x+12=0

{6x-18y+4 =0

cкладываем

-48х+16=0

х=1/3

y=1/3

Стационарная точка (1/3;1/3)  принадлежит области ( см. рис)

Находим вторые частные производные

∂²z/∂x²=-18

∂²z/∂y²=-18

∂²z/∂x∂y=6

A=-18; B=-18: C =6

Δ=AB-C²=(-18)·(-18) -6²>0

A < 0

(1/3;1/3) - точка максимума

z(1/3;1/3)=6·(1/3)·(1/3)-9·(1/3)²-9·(1/3)²+4·(1/3)+4·(1/3)=(2/3)-1-1+(8/3)=4/3 - наибольшее значение функции

На границе

При x=0

z=-9y²+4y

Квадратичная функция при 0 ≤y ≤2

z`=-18y+4

z`=0

y=4/18=2/9 - точка максимума

z(2/9)=-9·(2/9)²+4·(2/9)=(-4/9)+(8/9)=4/9 < 4/3

z(0)=0

z(2)=-9·2²+4·2=-28

При y=0

z=-9x²+4x

Квадратичная функция при 0 ≤x ≤1

z`=-18y+4

z`=0

y=4/18=2/9 - точка максимума

z(2/9)=-9·(2/9)²+4·(2/9)=(-4/9)+(8/9)=4/9 < 4/3

z(0)=0

z(1)=-9·1²+4·1=-5 > -28

При х=1

z=6y-9-9y²+4+4y, исследуем на [0;2], 0 ≤y≤2

z(y)=-9y²+10y-5  - квадратичная функция

z`=-18y+10

z`=0

-18y+10=0

y=10/18=5/9  - точка максимума

при y=5/9

z=-9·(5/9)²+10·(5/9)-5 =- (25/9)+(50/9) -5 =-20/9

Находим значения на концах

z(0)=-5

z(2)=-9·2²+10·2-5=-21 > -28

При y=2

z=12x-9x²-9·2²+4x+4·2, исследуем на [0;1], 0 ≤x≤1

z(y)=-9x²+16x-28  - квадратичная функция

z`=-18x+16

z`=0

-18x+16=0

x=16/18=8/9  - точка максимума

при x=8/9

z=-9·(8/9)²+16·(8/9)-28 =- (64/9)+(128/9) -28 >-28

Находим значения на концах

z(0)=-28

z(1)=-9·1²+16·1-28=-21 > -28

z(1/3;1/3)=4/3 - наибольшее значение функции в области

z(1;2) =-28 -  наибольшее значение функции в области


наименьшее и наибольшее значения функции z=6xy-9x^2-9y^2+4x+4y в области ограниченной прямыми х=0, х
0,0(0 оценок)
Ответ:
mammedova75
mammedova75
15.11.2022 01:29
1) Просто вместо x подставь число 4 и посчитай у. Значение у - и будет значением функции. y=0.5*4-1=1
2) Вместо у подставь (-8) и реши уравнение. Значение х - значение аргумента.
-8=0.5х-1
0.5х=-7
х=-14
3)    (1)При пересечении с осью абсцисс (горизонтальная ось) у=0, следовательно в формулу вместо у подставляешь 0 и находишь х.
0=0.5х-1
х=2
Значит (2;0) - координаты пересечения графика с осью абсцисс.
       (2)При пересечении с осью ординат (вертикальная ось) х=0, следовательно в формулу вместо х подставляешь 0 и находишь у.
у=0.5*0-1
у=-1
Значит (0;-1) - координаты пересечения графика с осью ординат.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота