Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.
* * * * * * * * * * * * * * * * * * * * * * * * *
Решите систему уравнений { 3xy -x =5 ; 3xy -y= 4
ответ: (x₁ ; y₁) = ( -5/3 ; -2/3 ) ; ( x₂ ; y₂) = (1 ; 2) .
Объяснение:
{ 3xy -x =5 ; 3xy -y= 4 . ⇔ { 3xy -x-(3xy -y) = 5 - 4 ; 3xy -x =5 . ⇔
{ y=x+1 ; 3xy - x =5 .⇔ { y=x+1 ; 3x(x+1) - x -5 =0 .⇔ { y=x+1 ; 3x²+2x -5 =0 .
3x²+2x -5 =0
D₁= D/4 =( 2/2)² - 3*(-5) =1²+15 =16 = 4² ; x = (-1 ± √D₁)/3
⇒ x₁ = (-1 -4) /3 = - 5/3 ⇒ y₁ = x₁+1 = -5/3+1 = -2/3
x₂ = (-1 +4) /3 = 1 ⇒ y₂ = x₂+1 =1 +1 = 2 .