1) Если выражение (2х+7)^4 + (2x-4)^4 равно 0, то у него 4 корня, все они имеют выражения с мнимыми числами. Если раскрыть скобки, получим: 32x⁴ + 96x³ + 1560x² + 2232x + 2657 = 0 Корни полинома равны :x1 ≈ −0.750000000000003 − i ∙ 6.63908729652601 P(x1) ≈ 0 iter = 1 x2 ≈ −0.75 + i ∙ 1.13908729652601 P(x2) ≈ 0 iter = 6 x3 ≈ −0.75 − i ∙ 1.13908729652601 P(x3) ≈ 0 iter = 4 x4 ≈ −0.749999999999997 + i ∙ 6.63908729652601 P(x4) ≈ 0 iter = 1 2) А = 0,6Б А + 84 = 1,4Б А = 1,4Б-84 Приравниваем правые части этих уравнений: 0,6Б = 1,4Б-84 2Б = 84 Б = 84 / 2 = 42 А = 0,6*42 = 25,2 А + Б = 42 + 25,2 = 67,2.
Наименьшее количество материала потребуется на цилиндрический бак меньшей площади. Площадь нашего бака - это площадь боковой поверхности цилиндра плюс площадь основания, то есть
Задача сводится к поиску минимума функции S, описывающей эту площадь. Для этого нужно перейти от функции двух переменных к функции одной переменной. Размеры цилиндра зависят от двух величин - его высоты и радиуса основания. Выразим высоту цилиндра через известный нам объём и радиус из формулы объёма цилиндра:
Тогда
Для того, чтобы найти минимум функции нужно найти её производную и те точки, в которых она равна нулю.
Осталось подставить в это выражение значение объёма V, вычислить радиус и убедиться в том, что это точка минимума - при прохождении через эту точку производная должна менять знак с минуса на плюс. Тут так и происходит. Найдём высоту цилиндра
Если раскрыть скобки, получим:
32x⁴ + 96x³ + 1560x² + 2232x + 2657 = 0
Корни полинома равны
:x1 ≈ −0.750000000000003 − i ∙ 6.63908729652601 P(x1) ≈ 0 iter = 1
x2 ≈ −0.75 + i ∙ 1.13908729652601 P(x2) ≈ 0 iter = 6
x3 ≈ −0.75 − i ∙ 1.13908729652601 P(x3) ≈ 0 iter = 4
x4 ≈ −0.749999999999997 + i ∙ 6.63908729652601 P(x4) ≈ 0 iter = 1
2) А = 0,6Б
А + 84 = 1,4Б А = 1,4Б-84
Приравниваем правые части этих уравнений:
0,6Б = 1,4Б-84
2Б = 84
Б = 84 / 2 = 42
А = 0,6*42 = 25,2
А + Б = 42 + 25,2 = 67,2.
Задача сводится к поиску минимума функции S, описывающей эту площадь. Для этого нужно перейти от функции двух переменных к функции одной переменной.
Размеры цилиндра зависят от двух величин - его высоты и радиуса основания. Выразим высоту цилиндра через известный нам объём и радиус из формулы объёма цилиндра:
Тогда
Для того, чтобы найти минимум функции нужно найти её производную и те точки, в которых она равна нулю.
Осталось подставить в это выражение значение объёма V, вычислить радиус и убедиться в том, что это точка минимума - при прохождении через эту точку производная должна менять знак с минуса на плюс. Тут так и происходит. Найдём высоту цилиндра