Раз надо цены узнать - обозначим их Х и У причем цена помидоров будет зимой Х, а летом 2х/3 то есть первая покупка - зимой была такой 2х+3у = 270
А вторая, летом (3*2х/3+2у) = 230 заметьте, что денег за помидоры заплатили одинаково и зимой и летом! Ведь: 3*2х/3 = 2х то есть летняя покупка выглядит так: 2х+2у = 230
значит, разница в цене - вся! - обеспечивается Апельсинами, а их куплено летом на 1 кг меньше
то есть один их килограмм, иначе говоря, у = 270-230 = 40
вот и все:, значит помидоры стоили зимой 2х+3*40 = 270 2х = 270-120 х = 150/2 х = 75
4(x^2 + 7x + 6)*(x^2 + 5x + 6) = -3x^2
Замена x^2 + 6x + 6 = t
4(t + x)(t - x) = -3x^2
4(t^2 - x^2) = -3x^2
4t^2 - 4x^2 + 3x^2 = 0
4t^2 - x^2 = 0
(2t - x)(2t + x) = 0
Обратная замена
(2x^2 + 12x + 12 - x)(2x^2 + 12x + 12 + x) = 0
(2x^2 + 11x + 12)(2x^2 + 13x + 12) = 0
Разложили на 2 квадратных. Решаем их отдельно.
1) 2x^2 + 11x + 12 = 0
D = 11^2 - 4*2*12 = 121 - 96 = 25 = 5^2
x1 = (-11 - 5)/4 = -16/4 = -4
x2 = (-11 + 5)/4 = -6/4 = -1,5
2) 2x^2 + 13x + 12 = 0
D = 13^2 - 4*2*12 = 169 - 96 = 73
x3 = (-13 - √73)/4
x4 = (-13 + √73)/4
причем цена помидоров будет зимой Х, а летом 2х/3
то есть первая покупка - зимой была такой
2х+3у = 270
А вторая, летом
(3*2х/3+2у) = 230
заметьте, что денег за помидоры заплатили одинаково и зимой и летом! Ведь:
3*2х/3 = 2х
то есть летняя покупка выглядит так:
2х+2у = 230
значит, разница в цене - вся! - обеспечивается Апельсинами, а их куплено летом на 1 кг меньше
то есть один их килограмм, иначе говоря, у = 270-230 = 40
вот и все:, значит помидоры стоили зимой
2х+3*40 = 270
2х = 270-120
х = 150/2
х = 75
ну, а летом они стали стоить
75*2/3 = 50
Ура!))