Y = -x² + 4x + a Функция тогда принимает отрицательные значения, когда y(x) < 0. -x² + 4x + a < 0 x² - 4x - a > 0 x² - 4x + 4 - 4 - a > 0 (x - 2)² > 4 + a Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0. Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const. Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4. Наибольшим целым таким a будет являться число 5. ответ: при a = -5.
Функция тогда принимает отрицательные значения, когда y(x) < 0.
-x² + 4x + a < 0
x² - 4x - a > 0
x² - 4x + 4 - 4 - a > 0
(x - 2)² > 4 + a
Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0.
Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const.
Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда
P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4.
Наибольшим целым таким a будет являться число 5.
ответ: при a = -5.
б) |5 - 4a| = 5 - 4a ===> 5 - 4a >= 0, 4a <= 5, a <= 5/4 =
= 1.25
в) |18 - 9a| / (18 - 9a) = 1 ===> 18 - 9a > 0, 9a < 18
a < 18/9 = 2
г) |10a - 45| / 10a - 45 = -1 ===> 10a - 45 < 0 10a > 45
a > 45 / 10 = 4.5
ответ. а) a > 31/3, б) a <= 1.25, в) a < 2, г) a > 4.5