3 − sin x cos x + 3 cos x = −3 sin x, 3(cos x + sin x) − sin x cos x + 3 = 0.
Пусть cos x + sin x = t. Имеем:
t = √2 (½√2 cos x + ½√2 sin x) = = √2 (sin ¼π cos x + cos ¼π sin x) = √2 sin(x + ¼π);
t² = (cos x + sin x)² = cos² x + 2 sin x cos x + sin² x = = 1 + 2 sin x cos x, откуда sin x cos x = ½(t² − 1).
Уравнение переписывается так:
3t − ½(t² − 1) + 3 = 0, 6t − t² + 1 + 6 = 0, t² − 6t − 7 = 0, (t − 7)(t + 1) = 0.
Два случая.
1) t = 7 — решений нет, поскольку t = √2 sin(x + ¼π) ≤ √2;
2) t = −1, тогда √2 sin(x + ¼π) = −1,
x + ¼π = −¼π + 2πn, x = −½π + 2πn или x + ¼π = −¾π + 2πn, x = −π + 2πn (= π + 2πk, где k = n − 1).
ответ: −½π + 2πn, π + 2πk (k, n — целые).
Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч. По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение: 48/(v + 4) + 48/(v - 4) = 5 переносим 5 влево и приводим к общему знаменателю: [ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0 Числитель приравниваем к 0 и раскрываем скобки: 48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0 Раскрываем скобки и приводим подобные: 96v - 5v^2 + 80 = 0 Меняем знак: 5v^2 - 96v - 80 = 0 D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2 v1 = (48 - 52) / 5 < 0 v2 = (48 + 52) / 5 = 20 ответ: 20 км/ч.
3 − sin x cos x + 3 cos x = −3 sin x,
3(cos x + sin x) − sin x cos x + 3 = 0.
Пусть cos x + sin x = t. Имеем:
t = √2 (½√2 cos x + ½√2 sin x) =
= √2 (sin ¼π cos x + cos ¼π sin x) = √2 sin(x + ¼π);
t² = (cos x + sin x)² = cos² x + 2 sin x cos x + sin² x =
= 1 + 2 sin x cos x, откуда sin x cos x = ½(t² − 1).
Уравнение переписывается так:
3t − ½(t² − 1) + 3 = 0,
6t − t² + 1 + 6 = 0,
t² − 6t − 7 = 0,
(t − 7)(t + 1) = 0.
Два случая.
1) t = 7 — решений нет, поскольку t = √2 sin(x + ¼π) ≤ √2;
2) t = −1, тогда √2 sin(x + ¼π) = −1,
x + ¼π = −¼π + 2πn, x = −½π + 2πn
или
x + ¼π = −¾π + 2πn, x = −π + 2πn (= π + 2πk, где k = n − 1).
ответ: −½π + 2πn, π + 2πk (k, n — целые).
Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч.
По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение:
48/(v + 4) + 48/(v - 4) = 5
переносим 5 влево и приводим к общему знаменателю:
[ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0
Числитель приравниваем к 0 и раскрываем скобки:
48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0
Раскрываем скобки и приводим подобные:
96v - 5v^2 + 80 = 0
Меняем знак:
5v^2 - 96v - 80 = 0
D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2
v1 = (48 - 52) / 5 < 0
v2 = (48 + 52) / 5 = 20
ответ: 20 км/ч.