Совокупность всех первообразных F(x) + C функции f(x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается ∫f(x)dx, где f(x) — подынтегральная функция, f(x)dx — подынтегральное выражение, х – переменная интегрирования.
Найти неопределенный интеграл:
1. ∫(x2 + x – 1)dx.
2014-10-28_094604
2. ∫ (sinx – 3cosx)dx.
A) cosx-3sinx+C; B) –cosx+3sinx+C; C) -cosx-3sinx+C; D) cosx+3sinx+C; E) -cosx-sinx.
2014-10-28_094830
A) tgx-ctgx+C; B) tgx+ctgx+C; C) ctgx-tgx+C; D) tg2x+ctg2x+C; E) tg2x-ctg2x+C.
Найти неопределенный интеграл:
1. ∫(x2 + x – 1)dx.
2014-10-28_094604
2. ∫ (sinx – 3cosx)dx.
A) cosx-3sinx+C; B) –cosx+3sinx+C; C) -cosx-3sinx+C; D) cosx+3sinx+C; E) -cosx-sinx.
2014-10-28_094830
A) tgx-ctgx+C; B) tgx+ctgx+C; C) ctgx-tgx+C; D) tg2x+ctg2x+C; E) tg2x-ctg2x+C.
5. ∫(4x – 3)5dx.
2014-10-28_095603
7. ∫sin(12x + 7)dx.
2014-10-28_100021
Формула Ньютона-Лейбница:
a11-1
log a (a^2/b) log a (a^2) - log a (b)
5log (b^2)/a (a^2/b)= 5· = 5· =
log a (b^2)/a log a (b^2)-log a (a)
2- 3 (-1)
= 5 = 5 = -1
2·3 -1 5
2) log 2 (a^1/3) , если log 4 (a^3)=9
log 4 (a^3)=9 ⇔3 log 4 (a)=9 ⇔ log 4 (a)=3
log 4 (a^1/3) (1/3)log 4 (a) 1log 2 (a^1/3) = = = = 2
log 4 (2) log 4 (√4) 1/2
3) lg2.5 если log 4(125) = a
log 4(125) = a ⇔ log 4(5³) =3 log 4(5) =a ⇔ log 4(5)=a/3
log 4 (5/2) log 4 (5)-log 4 (2) a/3-1/2 2a-3lg2.5 = = = =
log 4 (5·2) log 4 (5) +log 4 (2) a/3 +1/2 2a+3