Много избыточных данных в . видимо чтобы запутать. мне представляется все гораздо проще. если скорость каждого автобуса увеличится в двое, то в двое увеличится и их общая скорость сближения, следовательно в двое уменьшиться время в пути. значит и к месту встречи они доберутся в двое быстрее. и встретятся а во сколько они выехали? мы не знаем их время в пусть выехали они в 6 утра. встретились в 12 дня. в пути были 12-6=6 часов. увеличив в двое скорость - в двое уменьшится скорость в пути 6: 2=3 ч. встретятся они в 6+3=9 ч. или еще как вариант, но не уверен в правильности обозначим скорости автобусов через х и у, тогда х+у в 12.00 2х+у в 12.00 - 0.56 = 11.04 х+2у в 12.00 - 1.05 = 10.55 если сложим два последних уравнения (2х+у)+(х+2у) и вычтем первое (2х+у)+(х++у)=2х+у+х+2у-х-у=2х+2у а теперь попробуем тоже самое сделать с правыми частями 11.04+10.55-12.00=21.59 - 12.00= 9.59 получается так, что встреча будет в 9.59
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.