Пусть один катет прямоугольного треугольника будет а см , а другой bсм.
Тогда площадь равна 0,5*а* b, а квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:
Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.
Решим квадратное уравнение:
Если b=6, то а=8
Если b=8, то а=6
Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)
Пусть расстояние от В до точки встречи S км/ч. Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км:
(18+S) / x = 4/3 отсюда Х = 3 * (18+S) / 4
За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км:
Проверка: первый за 4/3 часа проехал 18+10/3 = 64/3 км. Его скорость 64/3 / (4/3) = 16 км/ч. Скорость второго 16-5=11 км/ч. За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 18 - 44/3 = 10/3 км от пункта В
24 см.
Объяснение:
Пусть один катет прямоугольного треугольника будет а см , а другой bсм.
Тогда площадь равна 0,5*а* b, а квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:
Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.
Решим квадратное уравнение:
Если b=6, то а=8
Если b=8, то а=6
Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)
P= 6+8+10 = 24 (см)
Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч.
Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км:
(18+S) / x = 4/3
отсюда Х = 3 * (18+S) / 4
За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км:
(18-S) / (х-5) = 4/3
(18+S) / x = (18-S) / (х-5)
(18+S) (x-5) = (18-S) x
18x - 90 + Sx - 5S = 18x - Sx
2Sx - 5S - 90 = 0
подставляем x,выраженное через S (Х = 3 * (18+S) / 4)
2S * 3 (18+S) / 4 - 5S - 90 = 0
1.5 S (18+S) - 5S - 90 = 0
1.5 S^2 + 27S - 5S - 90 = 0
1.5S^2 + 22S - 90 = 0
D = 22^2 + 4*1.5 * 90 = 484 + 540 = 1024 = 32^2
S1 = (-22 - 32)/3 <0
S2 = (-22+32)/3 = 10/3 = 3 1/3
ответ: на расстоянии 3_1/3 км.
Проверка:
первый за 4/3 часа проехал 18+10/3 = 64/3 км.
Его скорость 64/3 / (4/3) = 16 км/ч.
Скорость второго 16-5=11 км/ч.
За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А).
18 - 44/3 = 10/3 км от пункта В