Судя по условию задачи, машины выехали в одном направлении, и первая, более быстрая машина (ее скорость v₁ = 89 км/ч ) попутно догоняет вторую, медленную машину (ее скорость v₂=56 км/ч) и догонит ее в точке С:
89 км/ч→ 56 км\ч→ АB - - - - - С 99 км
Допустим, машины встретились в точке С. На это им потребовалось одинаковое время t, за которое они разные пути S₁ и S₂: S₁ = AB + BC = 99+BC S₂ = BC С другой стороны S₁= v₁t = 89t S₂ = v₂t = 56t Выразим неизвестное время t из первого и второго уравнений и приравняем полученные выражения (поскольку время одно и то же) : 99+BC = 89t, t = (99+BC) / 89 BC = 56t, t = BC / 56 (99+BC) / 89 = BC / 56 56(99+BC) = 89 BC 5544 + 56 BC = 89 BC 5544 = 33 BC BC = 5544 / 33 = 168 BC = 168 (км) t = BC/56 = 168/56 = 3 (ч)
ответ: на расстоянии 168 км от города B через 3 часа после выезда
Можно решить другим Представим, что вторая машина стоит в городе B. Тогда первая машина движется к ней со скоростью 89-56 = 33 км/ч Расстояние между машинами 99 км. И это расстояние будет пройдено первой машиной за время = путь / скорость = 99/33=3 ч. Зная время, можно перейти к первоначальным условиям задачи (обе машины движутся) и найти расстояние между точками B и C. Это удобнее сделать, исходя из движения второй машины, потому что она двигалась из точки B в точку C. длина BC = скорость второй машины * 3 часа = 56 км/ч * 3 ч = 168 км.
Х км/ч- скорость 1 автобуса(х+4) км/ч- скорость 2 автобусаS=72 км72/х час-время 1 автобуса72/(х+4) час- время 2 автобусаОдин автобус прибыл на 15 минут раньше, т.е на 1/4ч или 0.25часа72/х-72/(х+4)=0,25- умножим обе части уравнения на х(х+4), при условии,что х(х+4) не равно нулю.72х+288-72х=0,25х^2+x0.25x^2+x-288=0-умножим обе части уравнения 4x^2+4x-1152=0D=4^2-4*(-1152)=16+4608=4624x1=-4+68/2=64/2x1=32x2=-4-68/2=-72/2x2=-36-корень не является нашим решением уравнения х км/ч- скорость 1 автобуса=32км/ч(х+4) км/ч- скорость 2 автобуса=32+4=36км/ч 72/32-72/36=0,252,25-2=0,250,25=0,25
89 км/ч→ 56 км\ч→
АB - - - - - С
99 км
Допустим, машины встретились в точке С. На это им потребовалось одинаковое время t, за которое они разные пути S₁ и S₂:
S₁ = AB + BC = 99+BC
S₂ = BC
С другой стороны
S₁= v₁t = 89t
S₂ = v₂t = 56t
Выразим неизвестное время t из первого и второго уравнений и приравняем полученные выражения (поскольку время одно и то же) :
99+BC = 89t, t = (99+BC) / 89
BC = 56t, t = BC / 56
(99+BC) / 89 = BC / 56
56(99+BC) = 89 BC
5544 + 56 BC = 89 BC
5544 = 33 BC
BC = 5544 / 33 = 168
BC = 168 (км)
t = BC/56 = 168/56 = 3 (ч)
ответ: на расстоянии 168 км от города B через 3 часа после выезда
Можно решить другим
Представим, что вторая машина стоит в городе B.
Тогда первая машина движется к ней со скоростью
89-56 = 33 км/ч
Расстояние между машинами 99 км.
И это расстояние будет пройдено первой машиной за
время = путь / скорость = 99/33=3 ч.
Зная время, можно перейти к первоначальным условиям задачи (обе машины движутся) и найти расстояние между точками B и C. Это удобнее сделать, исходя из движения второй машины, потому что она двигалась из точки B в точку C.
длина BC = скорость второй машины * 3 часа = 56 км/ч * 3 ч = 168 км.
72/32-72/36=0,252,25-2=0,250,25=0,25