По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а произведение корней = свободному члену, Значит, х1 + х2 = а-2, х1*х2=-а-3. Обе части первого равенства возведем в квадрат и вместо х1*х2 подставим -а-3. Получим уравнение -2а-6=а^ -4а+4, откуда =а^-2а+10. Рассмотрим функцию у= а^-2а+10, график - парабола, ветви вверх, наименьшее значение в вершине( х= -в/2а), отсюда а= 2/2 =1. ( Если изучили производную, то наименьшее значение функции у= а^-2а+10 найдем через производную у. У'= 2а-2, у'=0 при а=1. А=1 - точка минимума.) ответ: при а=1.
-2а-6=а^ -4а+4, откуда =а^-2а+10. Рассмотрим функцию у= а^-2а+10, график - парабола, ветви вверх, наименьшее значение в вершине( х= -в/2а), отсюда а= 2/2 =1.
( Если изучили производную, то наименьшее значение функции у= а^-2а+10 найдем через производную у. У'= 2а-2, у'=0 при а=1. А=1 - точка минимума.)
ответ: при а=1.
Объяснение:
У нас есть график y = 1/x.
1) Чтобы получить y = 1/(x-1), его нужно сдвинуть на 1 вправо.
Теперь вертикальная линия разрыва будет x = 1, а не x = 0.
Чтобы получить y = 4/(x-1), нужно все значения умножить на 4.
2) Точно также, сначала сдвигаем график y = 1/x на 2 влево, а потом переворачиваем график и умножаем все значения на 3.
3) Тоже, сначала сдвигаем график y = 1/x на 1 вправо, потом умножаем все значения на 2, и, наконец, сдвигаем весь график на 3 вверх.
1 график я нарисовал на рисунке, остальные делаются точно также.
Но это очень приблизительный график, точнее в Пайнте не построишь.
Главное, понятен порядок построения.