Пусть первоначальная скорость поезда будет х км/ч,тогда увеличенная скорость будет х+1 км/ч. Первоначальное запланированное время в пути тогда будет 60/х часов,а ускоренное время будет 60/х+1 часов.Разница между первоначальным и ускоренным временем в пути составляет 3 часа.Составляем уравнение: 60/х - 60/х+1 =3. Решаем: 60(х+1) - 60*х=3(х^2+х) 60х+60-60х=3х^2+3х 3х^2+3х-60=0 D=3^2-4*3*(-60)= 9+720=729 x1= (-3-27 )/2*3=-30/6=-5; х2=(-3+27)/2*3=24/6=4. х1 имеет отрицательное значение,а значит не удовлетворяет условию задачи - скорость поезда не может быть отрицательной ,а х2 положительное число,значит удовлетворяет условию задачи.Следовательно,первоначальная запланированная скорость поезда составляла 4 км/ч.
Объяснение: 4. (sin(β-π)×sin(2π-β)×cos(β-2π))/
/(sin(π/2 -β)×ctg(π-β)×ctg(β+ 3π/2)) =
=(sin(-(π-β))×sin(-β+2π)×cosβ)/(cosβ×(-ctgβ)×(-tgβ))=
=(-sinβ×(-sinβ)×cosβ)/(cosβ×ctgβ×tgβ)=(sin²β×cosβ)/(cosβ×1) =sin²β ;
5.
1+sinx×cosx×tgx = 1+ (sinx×cosx×sinx)/cosx= 1+ sin²x =1 + sin²(π/3)=
=1+(√3/2)² = 1+ 3/4 = (4+3)/4 = 7/4.
Здесь sin(π/3) = √3/2.
6. tgα=sinα/cosα , cosα=4/5,
Найдем sinα: sin²α= 1 - cos²α = 1 - (4/5)² = 1- (16/25) = (25-16)/25 =
= 9/25;
sinα = - √(9/25) = -3/5; sinα отрицательный потому что (3π/2)<α<2π ;
tgα= sinα/cosα = -(3/5)/(4/5) = -(3×5)/(5×4) = - 3/4.
ответ:4 км/ч
Объяснение:
Пусть первоначальная скорость поезда будет х км/ч,тогда увеличенная скорость будет х+1 км/ч. Первоначальное запланированное время в пути тогда будет 60/х часов,а ускоренное время будет 60/х+1 часов.Разница между первоначальным и ускоренным временем в пути составляет 3 часа.Составляем уравнение: 60/х - 60/х+1 =3. Решаем: 60(х+1) - 60*х=3(х^2+х) 60х+60-60х=3х^2+3х 3х^2+3х-60=0 D=3^2-4*3*(-60)= 9+720=729 x1= (-3-27 )/2*3=-30/6=-5; х2=(-3+27)/2*3=24/6=4. х1 имеет отрицательное значение,а значит не удовлетворяет условию задачи - скорость поезда не может быть отрицательной ,а х2 положительное число,значит удовлетворяет условию задачи.Следовательно,первоначальная запланированная скорость поезда составляла 4 км/ч.