1.
2д 1
___ + 1 = ___ умножаем обе части уравнения на 7, на выходе:
7 7
2д + 7 = 1
2д = -6
д = -3
ответ д = -3
2.
х 70
- 3 = х - умножаем обе части уравнения на 22, на выходе:
11 22
2х - 66 = 22х - 70
70 - 66 = 22х - 2х
20х = 4
х = 0,2
ответ х =0,2.
Доклад окончен.
В решении.
Объяснение:
у = 32/(2 - х)² - (2 + х)²
Область определения - это значения х, при которых функция существует, обозначение D(f) или D(y).
Данная функция существует, если её знаменатель больше нуля (известно, что на ноль делить нельзя, и дробь в этом случае не имеет смысла).
Поэтому вычислить область определения через неравенство:
(2 - х)² - (2 + х)² > 0
Раскрыть скобки:
4 - 4х + х² - (4 + 4х + х²) > 0
4 - 4х + х² - 4 - 4х - х² > 0
-8х > 0
8х < 0
x < 0.
Решение неравенства х∈(-∞; 0).
Область определения функции D(y) = (-∞; 0).
То есть, функция существует при всех значениях х от - бесконечности до х = 0.
1.
2д 1
___ + 1 = ___ умножаем обе части уравнения на 7, на выходе:
7 7
2д + 7 = 1
2д = -6
д = -3
ответ д = -3
2.
х 70
- 3 = х - умножаем обе части уравнения на 22, на выходе:
11 22
2х - 66 = 22х - 70
70 - 66 = 22х - 2х
20х = 4
х = 0,2
ответ х =0,2.
Доклад окончен.
В решении.
Объяснение:
у = 32/(2 - х)² - (2 + х)²
Область определения - это значения х, при которых функция существует, обозначение D(f) или D(y).
Данная функция существует, если её знаменатель больше нуля (известно, что на ноль делить нельзя, и дробь в этом случае не имеет смысла).
Поэтому вычислить область определения через неравенство:
(2 - х)² - (2 + х)² > 0
Раскрыть скобки:
4 - 4х + х² - (4 + 4х + х²) > 0
4 - 4х + х² - 4 - 4х - х² > 0
-8х > 0
8х < 0
x < 0.
Решение неравенства х∈(-∞; 0).
Область определения функции D(y) = (-∞; 0).
То есть, функция существует при всех значениях х от - бесконечности до х = 0.