Знайдіть координати точок перетину графіків рівнянь не виконуючи побудов: 1) x - y = 4 та x + 2y = -2 2) 5x - y = 10 та 3x - 2y = -8 БУДУ ДУЖ ВДЯЧНА ЗА ПОМІЧ
Пусть первый в час х дет., второй х-6 в час 160:х производ. первого 160:(х-6) производ. второго 160/х=160/(х-6)-6 160(х-6)=160х-6х(х-6) 160х-960=160х-6+36х 6-36х-960=0
6x2 - 36x - 960 = 0 Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10 x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый 16-6=10 дет в час второй
У нас всего может выпасть 16( 2 в четвёртой, т.к. за каждый бросок количество комбинаций удваивается - 0 бросков - 1 комбинация, т.е. её просто нет, 1 бросок - 2 комбинации - орёл или решка, 2 броска - 4 комбинации: о-о, о-р,р-о, р-р и т. д.) комбинаций. Комбинаций, в которых орёл выпадает ровно 2 раза, 6 - монета выпадает орлом: 12,13,14,23,24,34(1,2,3,4 - номера бросков)(к слову, комбниаций, когда выпадает орёл ровно 3 раза - 4: 123,124,134,234, когда 1 раз - тоже 4 - 1,2,3,4, когда все 4 раза или не выпадет - по 1 разу(1234 и, соответственно, 0). 6+4+4+1+1=16), вероятность того, что орёл выпадет ровно 2 раза, рвна 6/16=3/8=0.375
160:х производ. первого
160:(х-6) производ. второго
160/х=160/(х-6)-6
160(х-6)=160х-6х(х-6)
160х-960=160х-6+36х
6-36х-960=0
6x2 - 36x - 960 = 0
Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10
x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый
16-6=10 дет в час второй
У нас всего может выпасть 16( 2 в четвёртой, т.к. за каждый бросок количество комбинаций удваивается - 0 бросков - 1 комбинация, т.е. её просто нет, 1 бросок - 2 комбинации - орёл или решка, 2 броска - 4 комбинации: о-о, о-р,р-о, р-р и т. д.) комбинаций. Комбинаций, в которых орёл выпадает ровно 2 раза, 6 - монета выпадает орлом: 12,13,14,23,24,34(1,2,3,4 - номера бросков)(к слову, комбниаций, когда выпадает орёл ровно 3 раза - 4: 123,124,134,234, когда 1 раз - тоже 4 - 1,2,3,4, когда все 4 раза или не выпадет - по 1 разу(1234 и, соответственно, 0). 6+4+4+1+1=16), вероятность того, что орёл выпадет ровно 2 раза, рвна 6/16=3/8=0.375