Объяснение:
2!·4!·6!·...·(2n)!≥((n+1)!) ⁿ
Неравенство либо не должно быть строгим, либо нужно доказывать при n≥2. Так как при n=1 оно превращается в равенство.
Введём следующее обозначение. A(n)=2!·4!·6!·...·(2x)!; B(n)=((n+1)!)ⁿ
Докажем данное неравенство с метода математической индукции.
База верна.
A(1)=2!, B(1)=((1+1)!)¹=2!, A(1)=B(1)⇒A(1)=B(1). То есть, при n=1 имеем равенство.
A(2)=2!4!=2!·4·4!>2!·3·4!=3!·4!>3!·3!=(3!)²=B(2)⇒A(2)>B(2)
Предположим, что неравенство выполняется при n, то есть A(n)>B(n)
Докажем, что неравенство выполняется при n+1, то есть A(n+1)>B(n+1)
A(n+1)=2!·4!·6!·...·2n!·(2(n+1))!=A(n)·(2(n+1))!>B(n)·(2(n+1))!=((n+1)!)ⁿ·(2(n+1))!>((n+1)!)ⁿ·(n+1)!=((n+1)!)ⁿ⁺¹=B(n+1)⇒A(n+1)>B(n+1).
Ч.т.д
2x^2 + 7x - 4 = 0 Разделим на 2.
x^2 + 3.5x - 2 = 0
По теореме Виета x_1 = -4, х_2 = 0,5
2x^2 + 7x - 4 = 2(x - x_1) * (x - x_2) = 2(x + 4) * (x - 0.5)
2(x + 4) * (x - 0.5) - (x^2 - 4) * (x + 4) = 0
(x + 4) * (2x - 1 - x^2 + 4) = 0
Произведение равно нулю, кода один из сомножителей равен нулю.
1) x + 4 = 0 x_1 = -4
2) -x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
По теореме Виета х_2 = -1, х_3 = 3
х_1 + х_2 + х_3 = -4 + (-1) + 3 = -2
ответ. -2
Объяснение:
2!·4!·6!·...·(2n)!≥((n+1)!) ⁿ
Неравенство либо не должно быть строгим, либо нужно доказывать при n≥2. Так как при n=1 оно превращается в равенство.
Введём следующее обозначение. A(n)=2!·4!·6!·...·(2x)!; B(n)=((n+1)!)ⁿ
Докажем данное неравенство с метода математической индукции.
База верна.
A(1)=2!, B(1)=((1+1)!)¹=2!, A(1)=B(1)⇒A(1)=B(1). То есть, при n=1 имеем равенство.
A(2)=2!4!=2!·4·4!>2!·3·4!=3!·4!>3!·3!=(3!)²=B(2)⇒A(2)>B(2)
Предположим, что неравенство выполняется при n, то есть A(n)>B(n)
Докажем, что неравенство выполняется при n+1, то есть A(n+1)>B(n+1)
A(n+1)=2!·4!·6!·...·2n!·(2(n+1))!=A(n)·(2(n+1))!>B(n)·(2(n+1))!=((n+1)!)ⁿ·(2(n+1))!>((n+1)!)ⁿ·(n+1)!=((n+1)!)ⁿ⁺¹=B(n+1)⇒A(n+1)>B(n+1).
Ч.т.д