Уравнение ax + by + c = 0 является уравнением прямой, которая в общем виде запишется как у = kx + m, приведем наше уравнение к общему виду линейных функций: ax + by + c = 0, by = - ax - c; y = - a/bx - c/b, где k = - a/b, m = - c/b; График функции будет прямая которая зависит от коэффициентов k и m, рассмотрим каждый случай: а) Для того чтобы прямая была параллельна оси Ох, необходимо чтобы коэффициент около х ( то есть а) равнялся 0 и уравнение прямой примет вид: by + c = 0; б) Для того чтобы прямая была параллельна оси Оy, необходимо чтобы коэффициент около y(то есть b) равнялся 0 и уравнение прямой примет вид: ax + c = 0; в) Чтобы график проходил через начало координат необходимо чтобы с = 0 и уравнение прямой примет вид: ax + by = 0; г) График совпадет с ось Ох (или Oy), когда коэффициент около у (или х) равен 0 и с = 0, тогда имеем: by = 0 - совпадает с ось Ох; (a,c = 0); ax = совпадает с ось Оy; (b,c = 0).
Через одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции