1.Диагонали в прямоугольнике равны (AC=BD) и точкой пересечения O делятся пополам, то есть, BD=2BO, следовательно,
AC=2BO=2∙8=16.
ответ: 16.
2.Ритмическое движение неровное, что придает взволнованности и напряженности. Не случаен и выбор тональности. Томный до-диез минор создает особую колористическую атмосферу. Несмотря на сравнительно миниатюрные размеры произведение производит неизгладимое впечатление. Глубочайшая тоска и всепоглощающая лирика отличают и выделяют прелюдию из цикла «Пьесы-фантазии». Сочинение стало популярным достаточно быстро. Сегодня оно входит в число часто исполняемых композиций среди известных пианистов по всему миру.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1.Диагонали в прямоугольнике равны (AC=BD) и точкой пересечения O делятся пополам, то есть, BD=2BO, следовательно,
AC=2BO=2∙8=16.
ответ: 16.
2.Ритмическое движение неровное, что придает взволнованности и напряженности. Не случаен и выбор тональности. Томный до-диез минор создает особую колористическую атмосферу. Несмотря на сравнительно миниатюрные размеры произведение производит неизгладимое впечатление. Глубочайшая тоска и всепоглощающая лирика отличают и выделяют прелюдию из цикла «Пьесы-фантазии». Сочинение стало популярным достаточно быстро. Сегодня оно входит в число часто исполняемых композиций среди известных пианистов по всему миру.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.