Надеюсь, что это не факториал =) итак y=(x+2)/(x^2-9) 1) ООФ x^2-9=\=0 => x=\=+-3 других ограничений нет, значит, ООФ (-oo;-3) U (-3;3) U (3;+oo) 2) Область значений (-oo;+oo) 3) четность f(x)=(x+2)/(x^2-9) f(-x)=(-x+2)/(x^2-9) вывод: ни четная, ни нечетная 4) Прерывность. В принципе, мы уже нашли это в ООФ, но все же Функция прерывается в точках х=-3, х=3 5) Нули функции (x+2)/(x^2-9)=0 x=-2 - нуль функции 6) Асимптоты Вертикальные асимпоты в точках х=-3, х=3 Горизонтальных асимптот нет, ибо функция имеет значения на всей числовой прямой 7) Точки макс/мин, промежутки возрастания f'(x)=-(x^2+4x+9)/(x^2-9)^2 критические точки x^2+4x+9=0 корней нет значит, во всех точках функция убывает, но не забываем о прерываниях функция убывает на (-oo;-3) U (-3;3) U (3;+oo)
а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
итак
y=(x+2)/(x^2-9)
1) ООФ
x^2-9=\=0 => x=\=+-3
других ограничений нет, значит, ООФ (-oo;-3) U (-3;3) U (3;+oo)
2) Область значений
(-oo;+oo)
3) четность
f(x)=(x+2)/(x^2-9)
f(-x)=(-x+2)/(x^2-9)
вывод: ни четная, ни нечетная
4) Прерывность.
В принципе, мы уже нашли это в ООФ, но все же
Функция прерывается в точках х=-3, х=3
5) Нули функции
(x+2)/(x^2-9)=0
x=-2 - нуль функции
6) Асимптоты
Вертикальные асимпоты в точках х=-3, х=3
Горизонтальных асимптот нет, ибо функция имеет значения на всей числовой прямой
7) Точки макс/мин, промежутки возрастания
f'(x)=-(x^2+4x+9)/(x^2-9)^2
критические точки
x^2+4x+9=0
корней нет
значит, во всех точках функция убывает, но не забываем о прерываниях
функция убывает на (-oo;-3) U (-3;3) U (3;+oo)
y =∛( (x²-5x +4) /(x-4) ) ;
т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то
y =∛( (x²-5x +4) /(x-4) )
ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * *
(точка с абсциссой x = 4 будет выколота на графике функции )
y = ∛ (x -1) , x ≠ 4 .
---
Пересечение с координатными осями :
В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy)
В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox)
Если x → -∞ , y → -∞
Если x → ∞ , y → ∞
б)
y = ((x^2-x-6)/(x-3)) ^(1/4)
y =( (x-3)(x+2) / x-3) ) ^(1/4) ;
y = (x+2) /( x-3) /(x - 3) ^(1/4)
ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
точка с абсциссой x = 3 будет выколота на графике функции
y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
Пересечение с координатными осями :
(0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2
(-2 ; 0) c осью ординат
График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле
,
Удачи Вам!