Чтобы найти среднее арифметическое значение набора, нужно каждое значение умножить на его частоту, потом всё это сложить и разделить на количество значений.
Объяснение: 1) f(x) = ax² + bx + c. Определим коэффициенты а, b и с следующим образом.
Так как функция пересекает ось ОХ в точках 1 и -9, х = 1 и х = -9 - корни уравнения ax² + bx + c = 0, а значит нашу функцию можна разложить на линейные множители, используя формулу ax² + bx + c = a(x - x₁)(x - x₂), где х₁ и х₂ - корни уравнения.
т.е. f(x) = a(x - 1)(x + 9).
Найдем координату вершины параболы по оси ОХ. Так как вершина равноудалена от любых двух точек, имеющих одинаковую ординату, то можем найти ее как среднее арифметическое нулей функции f(x):
Вспомним, что экстремум (координата вершины по оси ОУ) равен -25. С другой стороны можем найти его, подставив вместо х найденное значение х₀: y₀ = f(х₀). Подсставляем: -25 = a(-4 - 1)(-4 + 9);
-25 = a · (-5) · 5; -25 = -25a ⇒ a = 1.
т.е. f(x) = (x - 1)(x + 9) = x² + 8x - 9. График - во вложении 1.
2. График - во вложении 2.
А) Функция - возрастающая, поэтому наименьшее ее значение достигается в наименьшей точке, принадлежащей отрезку - х = 3. Наименьшее значение функции на заданном отрезке - . Соответсвенно наибольшее значение функции на заданном отрезке достигается при х = 8, т.е оно равно .
Б) Найдем абсциссы точек пересечения графиков функций y = 2√x и x - y = 0 (y = x) - это решения уравнения 2√x = x.
С учетом ОДЗ - x ≥ 0 - обе части возведем в квадрат: (2√x)² = x², 4x = x², x² - 4x = 0, x(x - 4) = 0, откуда х = 0 или х = 4.
Ординаты аналогичны, так как мы имели дело с дополнительным условием у = х в виде второй функции. Искомые точки пересечения - (0; 0) и (4; 4) (для наглядности изображены на графике).
1) 0,4; 2) 0,051
Объяснение:
Чтобы найти среднее арифметическое значение набора, нужно каждое значение умножить на его частоту, потом всё это сложить и разделить на количество значений.
1) Значения и частоты. Всего 9 значений:
_0_ | _1_ | _2_ | _3_ | _4_| _5_| _6_| _7_ | _8_
0,23| 0,12| 0,09| 0,14| 0,17| 0,21| 0,15| 0,02| 0,01
Среднее:
P ≈ 0,4
2) Значения и частоты. Всего 9 значений.
Очевидно, в таблице опечатка, в конце должно быть 0,9:
_0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9
0,04|0,09| 0,11| 0,16|0,32|0,17|0,05|0,01| 0,04
Среднее:
P = 0,051
Объяснение:
Объяснение: 1) f(x) = ax² + bx + c. Определим коэффициенты а, b и с следующим образом.
Так как функция пересекает ось ОХ в точках 1 и -9, х = 1 и х = -9 - корни уравнения ax² + bx + c = 0, а значит нашу функцию можна разложить на линейные множители, используя формулу ax² + bx + c = a(x - x₁)(x - x₂), где х₁ и х₂ - корни уравнения.
т.е. f(x) = a(x - 1)(x + 9).
Найдем координату вершины параболы по оси ОХ. Так как вершина равноудалена от любых двух точек, имеющих одинаковую ординату, то можем найти ее как среднее арифметическое нулей функции f(x):
Вспомним, что экстремум (координата вершины по оси ОУ) равен -25. С другой стороны можем найти его, подставив вместо х найденное значение х₀: y₀ = f(х₀). Подсставляем: -25 = a(-4 - 1)(-4 + 9);
-25 = a · (-5) · 5; -25 = -25a ⇒ a = 1.
т.е. f(x) = (x - 1)(x + 9) = x² + 8x - 9. График - во вложении 1.
2. График - во вложении 2.
А) Функция - возрастающая, поэтому наименьшее ее значение достигается в наименьшей точке, принадлежащей отрезку - х = 3. Наименьшее значение функции на заданном отрезке - . Соответсвенно наибольшее значение функции на заданном отрезке достигается при х = 8, т.е оно равно .
Б) Найдем абсциссы точек пересечения графиков функций y = 2√x и x - y = 0 (y = x) - это решения уравнения 2√x = x.
С учетом ОДЗ - x ≥ 0 - обе части возведем в квадрат: (2√x)² = x², 4x = x², x² - 4x = 0, x(x - 4) = 0, откуда х = 0 или х = 4.
Ординаты аналогичны, так как мы имели дело с дополнительным условием у = х в виде второй функции. Искомые точки пересечения - (0; 0) и (4; 4) (для наглядности изображены на графике).