Пусть в стелаже n полок. Задачу будем решать при формул арифметической прогрессии. аn = a1 +(n -1)d Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5 n - полок а1 =21 аn = 21 + (n - 1)*5 - книг на последней полке Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6 (n -1) - полок, т.к. полок на 1 меньше а1 =21 аn = 21 + ((n -1)- 1)*6 - книг на последней полке Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2 5n² + 37n = 6n² + 24n -30 n² - 13n -30 =0 Д = 169 +120 = 289 √Д = 17 n =(13 + 17)/2 = 15 ответ: в стелаже 15 полок.
Задачу будем решать при формул арифметической прогрессии.
аn = a1 +(n -1)d
Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5
n - полок
а1 =21
аn = 21 + (n - 1)*5 - книг на последней полке
Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6
(n -1) - полок, т.к. полок на 1 меньше
а1 =21
аn = 21 + ((n -1)- 1)*6 - книг на последней полке
Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2
5n² + 37n = 6n² + 24n -30
n² - 13n -30 =0
Д = 169 +120 = 289
√Д = 17
n =(13 + 17)/2 = 15
ответ: в стелаже 15 полок.
ax²+bx+c
a)a=-4
b)c=3
2
a)x²+6x+7=(x+3)²-2
b)x²-6x=(x-3)²-9
3
a)x²-6x-16=(x-3)²-25=(x-3-5)(x-3+5)=(x-8)9x+2)
b)9x²+6x-8=(3x+1)²-9=(3x+1-3)(3x+1+3)=(3x-2)(3x+4)
4
x²-x-6=(x-1/2)²-25/4=(x-1/2-5/2)(x-1/2+5/2)=(x-3)9x+2)
5
a)y²-10y+26=(y-5)²+1
(y-5)²≥0 U 1>0⇒(y-5)²+1>0
b)-y²+4y-6=-(y-2)²-2
-(y-2)²≤0 U -2<0⇒-(y-2)²-2<0
6
a)a²-4a+7=(a-2)²+3 наим.значение 3
b)-a²+6a-14=-(a-3)²-5
наиб значение -5
7
1 сторона стала 12-а,2 сторона 8+а
S=(12-a)(8+a)
S`=-1*(8+a)+1*(12-a)=-8-a+12-a=4-2a=0
2a=4
a=2
+ _
(2)
max
при а=2