x+1+|x²-x-3|=0.
x+1+|x²-x-3|=0.По определению модуля:
x+1+|x²-x-3|=0.По определению модуля:1) Если х²-х-3≥0, то |x²-x-3|=x²-x-3
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0х=√2 или х=-√2
При х=√2
ри х=√2 х²-х-3=(√2)²-√2-3<0.
ри х=√2 х²-х-3=(√2)²-√2-3<0.х=√2 не является корнем уравнения
При х=-√2
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.2) Если х²-х-3<0, то |x²-x|=-x²+x+3
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20x=(2-2√5)/2=1-√5 или х=(2+2√5)/2=1+√5
При х=1-√5
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - верно
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - вернох=1-√5 - корень уравнения
При х=1+√5
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - неверно
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравнения
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравненияОбъединяем ответы, полученные в 1) и 2).
ответ: х=-√2; х=1-√5
Объяснение:
у первой функции прозводная 1-4/x^2
esli prirovnyt k nulu, to extremumy +-2
от минус беск до минус двух, от двух до плюс бесконечности - возрастает
от минус двух до нуля и от нуля до двух убывает
вторая функция производная -2х/(хвквадрате+1)в квадрате
экстремумы 0
от минус бесконечности до нуля возрастате
от нуля до плюс бесконечности убывает
у третьей функции произвлдная хвквадрате+4х-12/(х+2)вкдадрате
экстнемумы -6 и 2
от минус бесконечности до минус шести и от двух до плюс бесконечности возрастает
от минус шести до минус двух и от минус двух до двух убывает
x+1+|x²-x-3|=0.
x+1+|x²-x-3|=0.По определению модуля:
x+1+|x²-x-3|=0.По определению модуля:1) Если х²-х-3≥0, то |x²-x-3|=x²-x-3
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0
сли х²-х-3≥0, то |x²-x-3|=x²-x-3 Уравнение принимает вид:х+1+х²-х-3=0х²-2=0(х-√2)(х+√2)=0х=√2 или х=-√2
При х=√2
ри х=√2 х²-х-3=(√2)²-√2-3<0.
ри х=√2 х²-х-3=(√2)²-√2-3<0.х=√2 не является корнем уравнения
При х=-√2
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.
ри х=-√2х²-х-3=(-√2)²-(-√2)-3=2+√2-3>0- верно.х=-√2- корень уравнения.2) Если х²-х-3<0, то |x²-x|=-x²+x+3
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20
сли х²-х-3<0, то |x²-x|=-x²+x+3 Уравнение принимает вид:х+1-х²+х+3=0х²-2х-4=0D=4+16=20x=(2-2√5)/2=1-√5 или х=(2+2√5)/2=1+√5
При х=1-√5
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - верно
ри х=1-√5х²-х-3=(1-√5)²-(1-√5)-3=1-2√5+5-1+√5-3=2-√5<0 - вернох=1-√5 - корень уравнения
При х=1+√5
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - неверно
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравнения
ри х=1+√5х²-х-3=(1+√5)²-(1+√5)-3=1+2√5+5-1-√5-3=2+√5<0 - невернох=1+√5 - не является корнем уравненияОбъединяем ответы, полученные в 1) и 2).
ответ: х=-√2; х=1-√5
Объяснение:
у первой функции прозводная 1-4/x^2
esli prirovnyt k nulu, to extremumy +-2
от минус беск до минус двух, от двух до плюс бесконечности - возрастает
от минус двух до нуля и от нуля до двух убывает
вторая функция производная -2х/(хвквадрате+1)в квадрате
экстремумы 0
от минус бесконечности до нуля возрастате
от нуля до плюс бесконечности убывает
у третьей функции произвлдная хвквадрате+4х-12/(х+2)вкдадрате
экстнемумы -6 и 2
от минус бесконечности до минус шести и от двух до плюс бесконечности возрастает
от минус шести до минус двух и от минус двух до двух убывает