Пусть собственная скорость лодки x [км/ч], тогда скорость лодки по течению x+2 [км/ч] и против течения x-2 [км/ч]. Время, затраченное на первый отрезок пути: 16/(x-2) [ч], на второй отрезок пути: 12/(x+2) [ч]. Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч] x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем: 16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2) 16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x 28*x + 8 = 3* x^2 - 12 3*x^2 - 28*x - 20 = 0 Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2 x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч] x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч] Второй корень логически не имеет смысла, поэтому ответ: 10 км/ч.
5 см и 8 см - стороны прямоугольника
Объяснение:
Р = 2(а+в) = 26 см - периметр прямоугольника
S1 = а² см² - площадь первого квадрата
S2 = в² см² - площадь второго квадрата
Составляем систему уравнений:
2(а+в) = 26
а² + в² = 89
2(а+в) = 26
а+в = 13
а = 13 - в - подставим это значение а во второе уравнение
а² + в² = 89
(13-в)² + в² = 89
169 - 26в + в² + в² = 89
2в² - 26в +169 - 89 = 0
2в² - 26в + 80 = 0 - разделим все уравнение на 2
в² - 13в + 40 = 0
в² - 8в - 5в + 40 = 0
в(в-8) - 5(в-8) = 0
(в-5)(в-8) = 0
Если в=5 см, то а=8 см, или наоборот в=8, а=5
ответ: 5 см и 8 см - стороны прямоугольника
Пусть собственная скорость лодки x [км/ч], тогда скорость лодки по течению x+2 [км/ч] и против течения x-2 [км/ч].
Время, затраченное на первый отрезок пути: 16/(x-2) [ч],
на второй отрезок пути: 12/(x+2) [ч].
Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч]
x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем:
16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2)
16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x
28*x + 8 = 3* x^2 - 12
3*x^2 - 28*x - 20 = 0
Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2
x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч]
x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч]
Второй корень логически не имеет смысла, поэтому ответ: 10 км/ч.