Знайдіть перший та п’ятий члени геометричної прогресії, якщо сума перших трьох дорівнює 52, а знаменник дорівнює 3.
2. Запишіть нескінченний періодичний дріб 0,0(12) у вигляді звичайного дробу. .
3. Знайдіть суму всіх додатних членів арифметичної прогресії
7,4; 7; 6,6;… .
Який многочлен треба відняти від многочлена 3c5 – 2c4 + 14c3 – 4c2 + c, щоб їхня різниця тотожно дорівнювала многочлену 5c3 + c2 – 7c?
3c5 – 2c4 + 9c3 – 5c2 + 8c
Знайдіть значення виразу:
2a(3a – 5) – 4a(4a – 5), якщо a = -0,2
-2,4
Обчисліть значення виразу, використовуючи винесення спільного множника за дужки: 2,49 ∙ 1,35 – 1,35 ∙1,84 + 1,352
Нинаю
Сторона квадрата на 3 см менша від однієї зі сторін прямокутника та на 5 см більша за його другу сторону. Знайдіть сторону квадрата, якщо його площа на 45 см2 більша за площу даного прямокутника.
15
Розв’яжіть рівняння, використовуючи розкладання на множники:
(х – 3)(х + 7) – (х + 7)(х – 8) = 0
-7
Объяснение:
1. Выделение полного квадрата
Прибавим и вычтем 4:
x^2 - 4x + 4 - 4 - 30 = 0
Заметим, что x^2 - 4x + 4 = (x - 2)^2, приведем подобные:
(x - 2)^2 - 34 = 0
(x - 2)^2 = 34
Извлекаем корень (я его обозначаю sqrt):
x - 2 = +- sqrt(34)
x = 2 +- sqrt(34)
2. Дискриминант.
Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a.
a = 1, b = -4, c = -30.
D = 16 + 120 = 136 = 4 * 34
x = (4 +- sqrt(4 * 34))/2
Можно вынести 4 из под знака корня и сократить на 2:
x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)
3. Дискриминант/4
Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a
D* = 4 + 30 = 34
x = (2 +- sqrt(34))/1 = 2 +- sqrt(34)
Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.
ответ. x = 2 +- sqrt(34).