Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z
Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х.
Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2.
Итак, найдем х, при котором выражение принимает наименьшее значение:
(х+4)²=0
х+4=0
х=0-4
х=-4 - при таком значении х значение будет наименьшим.
ответ: наименьшее значение выражения будет 2 при х=-4.