Дано неравенство.Линейная функция (3-х) убывающая, а показательная (3^х) возрастающая для всех х€R.
При х=0 3>1-неравенство не выполняется, значит возможные решения лежат в интервалах 2 и 4.
При х=0.7 2.3>2.158 -неравенство не выполняется, значит х=0.7 и бесконечно близкие к нему значения не входят в область решений. Возьмем х=0.74, получим 2.26>2.255 -опять не выполняется, а при х=0.742 2.258<2.260 -выполняется. Значит нижней границей интервала значение х=0.7 не является, поскольку при значениях 0.7<х<0.74 (например) неравенство не выполняется.
На 4м интервале неравенство верное для всех х этого интервала, включая даже х=2.3
1) Рассмотрим ромб АВСD. У него BD и АС - пересекающиеся диагонали. У ромба диагонали пересекаются под прямым углом, и точкой пересечения делиться пополам, значит ВO = 1/2 BD = 12 * 1/2 = 6 *(сm).
2) Рассмотрим треугольник АОВ. Он прямоугольный (угол О = 90 град.), значит по теореме Пифагора:
АО^2 + BO^2 = AB^2
AO^2 + 6^2 = 10^2
AO^2 = 100 - 36
AO^2 = 64
AO = корень из 64
AO(маленькая 1 снизу) = 8 (см), АО(маленькая 2 снизу) = -8 - не удовлетворяет условие задачи.
3) S (ABCD) = 1/2*AO*BO
S (ABCD) = 1/2 * 8 * 6
S (ABCD) = 1/2 * 48
S (ABCD) = 24 см^2
ответ: 24 см^2
четвертое х€(2,3;∞)
Объяснение
Дано неравенство.Линейная функция (3-х) убывающая, а показательная (3^х) возрастающая для всех х€R.
При х=0 3>1-неравенство не выполняется, значит возможные решения лежат в интервалах 2 и 4.
При х=0.7 2.3>2.158 -неравенство не выполняется, значит х=0.7 и бесконечно близкие к нему значения не входят в область решений. Возьмем х=0.74, получим 2.26>2.255 -опять не выполняется, а при х=0.742 2.258<2.260 -выполняется. Значит нижней границей интервала значение х=0.7 не является, поскольку при значениях 0.7<х<0.74 (например) неравенство не выполняется.
На 4м интервале неравенство верное для всех х этого интервала, включая даже х=2.3