Я не успею написать само решение, но идею - легко. Необходимо выполнить ряд преобразований. Сначала - раскрываем скобки. Зачем они? :D Получаем: 2sin4x + 2sin4x*cos2x - cos2x - cos^2(2x) = sin^2(2x). Переносим последнее слагаемое левой части в правую часть. 2sin4x + 2sin4x*cos2x - cos2x = cos^2(2x) + sin^2(2x). Очевидно, что cos^2(2x) + sin^2(2x) = 1 при любых значениях x. Тогда, перенося -cos2x в правую часть и вынося в левой части общий множитель за скобки, получим: 2sin4x * (1 + cos2x) = 1 + cos2x. Далее мы переносим всю правую часть уравнения влево и снова выносим общий множитель за скобки. (1 + cos2x) * (2sin4x - 1) = 0. Далее уравнение примет вид совокупности. Первым ее условием станет уравнение [1 + cos2x = 0], вторым же - [2sin4x - 1 = 0]. Эти уравнения сводятся к простейшим тригонометрическим уравнениям, поэтому решать до конца я не буду. Но корни получаются, на первый взгляд, хорошими. Удачи. :)
Необходимо выполнить ряд преобразований. Сначала - раскрываем скобки. Зачем они? :D Получаем:
2sin4x + 2sin4x*cos2x - cos2x - cos^2(2x) = sin^2(2x).
Переносим последнее слагаемое левой части в правую часть.
2sin4x + 2sin4x*cos2x - cos2x = cos^2(2x) + sin^2(2x).
Очевидно, что cos^2(2x) + sin^2(2x) = 1 при любых значениях x. Тогда, перенося -cos2x в правую часть и вынося в левой части общий множитель за скобки, получим:
2sin4x * (1 + cos2x) = 1 + cos2x.
Далее мы переносим всю правую часть уравнения влево и снова выносим общий множитель за скобки.
(1 + cos2x) * (2sin4x - 1) = 0.
Далее уравнение примет вид совокупности. Первым ее условием станет уравнение [1 + cos2x = 0], вторым же - [2sin4x - 1 = 0]. Эти уравнения сводятся к простейшим тригонометрическим уравнениям, поэтому решать до конца я не буду. Но корни получаются, на первый взгляд, хорошими. Удачи. :)
ответ: 100 рублей .
Объяснение:
Цена лопаты = х руб .
После повышения цены на 15% цена стала равна х+0,15х=1,15х руб .
После понижения цены на 20% цена лопаты стала равна 1,15х-1,15х*0,2=1,15*0,8х=0,92х руб .
0,92х руб - это 92% от первоначальной стоимости в х рублей, то есть 92 руб. (из условия) составляют 92% от первоначальной цены в х руб .
Верна пропорци: 92 руб - 92%
х руб - 100%
х=92*100:92=100 (руб.)
Если составить уравнение, то получим:
0,92х=92 ⇒ х=92:0,92 , х=100 руб .