1a) строим график функции это парабола с центром в точке (2,5; -0,25) и ветвями вверх она пересекает ось Ох в точках 2 и 3 (см. рисунок 1) ответ: х ∈(-∞;2) U (3; +∞) 1б) это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2) она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем" ответ: х∈(-∞; 2) U (2; +∞) 2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом". ответ: х ∈ (-3; 5) U (5; 8)
75 (км/час) - скорость автомобиля.
Объяснение:
Формула движения: S=v*t
S - расстояние v - скорость t – время
1)Известно, какое расстояние автомобиль и автобус, двигаясь до места встречи навстречу друг другу, это 90 км.
Известно время, которое они были в пути до встречи, это 45 минут, или 45/60 = 0,75 часа.
Можно найти общую скорость (скорость сближения):
90 : 0,75 = 120 (км/час).
2)Обозначение:
х - скорость автомобиля.
у - скорость автобуса.
90/х - время автомобиля на момент приезда в пункт В.
(90-36)/у - время автобуса на этот момент.
Время оба провели в пути равное, можем составить систему уравнений:
х + у = 120
90/х = (90-36)/у
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=120 - у
90/(120-у) = 54/у
Второе уравнение - пропорция.
Используя основное свойство пропорции, получим выражение:
90 * у = (120-у) * 54
90у=6480 - 54у
90у+54у=6480
144у=6480
у=6480/144
у=45 (км/час) - скорость автобуса.
Общая скорость известна, можно найти скорость автомобиля:
120 - 45 = 75 (км/час) - скорость автомобиля.
Проверка:
90/75 = 54/45
По основному свойству пропорции:
90*45 = 75*54
4050 = 4050, верно.
строим график функции
это парабола с центром в точке (2,5; -0,25) и ветвями вверх
она пересекает ось Ох в точках 2 и 3 (см. рисунок 1)
ответ: х ∈(-∞;2) U (3; +∞)
1б)
это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2)
она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем"
ответ: х∈(-∞; 2) U (2; +∞)
2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом".
ответ: х ∈ (-3; 5) U (5; 8)