b) Sₙ (cумма n первых членов геометрической прогрессии) = (b₁ · (qⁿ - 1)) ÷ (q - 1)
Значит S₅ = (b₁ · (q⁵ - 1)) ÷ (q - 1)
Осталось найти b₁
bₙ = b₁ · q⁽ⁿ⁻¹⁾
b₂ = b₁ · q
b₁ = b₂ ÷ q = 3 ÷ 1/3 = 9
Подставляем это значение в формулу:
S₅ = (9 · ((1/3)⁵ - 1)) ÷ ((1/3) - 1) = 13 целых и 4/9 (лучше записывать это дробью, т.к. в десятичном виде здесь будет бесконечное кол-во чисел после запятой - 13.4444444...)
1)
{ x-3y=4
{2x-y=3
{x=3y+4
{2(3y+4)-y=3
{x=3y+4
{6y+8-y=3
{x=3y+4
{5y=3-8
{x=3y+4
{5y=-5
{x=3y+4
{y=-1
{x=3*(-1)+4
{y=-1
{x=1
{y=-1
2)
Для того, чтобы решить систему уравнений 4 * х - у = 1 и 5 * х + 3 * у = 14, выразим из первого уравнения у, получим:
4 * х - 1 = у.
Теперь подставим полученное значение у во второе уравнение и вычислим чему равен х.
5 * х + 3 * (4 * х - 1) = 14;
5 * х + 12 * х - 3 = 14;
17 * х = 14 - 12;
17 * х = 2;
х = 2/17.
Теперь найденный х подставим в первое уравнение и найдем у.
у = 4 * 2/17 - 1.
у = 8/17 - 1;
у = - 9/17.
ответ: Корни уравнения равны х = 2/17, у = - 9/17.
ответ: выделен жирным шрифтом.
a) Sₙ (cумма n первых членов арифметической прогрессии) = (( a₁ + aₙ) · n) ÷ 2
Значит S₅ = (( a₁ + a₅) · 5) ÷ 2
Осталось найти a₁ и a₅
aₙ = a₁ + d · ( n – 1 )
Значит:
a₂ = a₁ + d · (2 - 1) И a₅ = a₁ + d · (2 - 1)
a₁ = a₂ - d = 3 - 4 = -1 a₅ = -1 + 4 · 4 = 15
Подставляем эти значения в формулу:
S₅ = (( -1 + 15) · 5) ÷ 2 = (14 · 5) ÷ 2 = 7 · 5 = 35
ответ: 35
b) Sₙ (cумма n первых членов геометрической прогрессии) = (b₁ · (qⁿ - 1)) ÷ (q - 1)
Значит S₅ = (b₁ · (q⁵ - 1)) ÷ (q - 1)
Осталось найти b₁
bₙ = b₁ · q⁽ⁿ⁻¹⁾
b₂ = b₁ · q
b₁ = b₂ ÷ q = 3 ÷ 1/3 = 9
Подставляем это значение в формулу:
S₅ = (9 · ((1/3)⁵ - 1)) ÷ ((1/3) - 1) = 13 целых и 4/9 (лучше записывать это дробью, т.к. в десятичном виде здесь будет бесконечное кол-во чисел после запятой - 13.4444444...)
ответ: 13 целых и 4/9