а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
ответ: а) нет; б) да; в) 3
X(t) = t² - 3t, tо = 4
Среднюю скорость движения на указанном отрезке времени;
Средняя скорость движения определим по формуле
Vcp= /frac{/Delta x}{/Delta t}
Δx=X(4)-X(0)=4²-3*4-0=16-12=4
Δt=4
Vcp= /frac{4}{4} =1
Скорость и ускорение в момент времени tо=4
Скорость точки в момент времени t определяется через производную перемещения
V(t) = X(t) =(t²-3t)=(t²)-(3t)=2t-3
V(4)=2*4-3=5
Ускорение точки в момент времени t определяется через производную скорости
а(t) =V(t)=(2t-3)=2
Моменты остановки
В момент остановки скорость равна нулю
V(t) = 0
2t - 3 = 0
2t = 3
t = 1,5
продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
В противоположном направлении так как знак скорости изменился на противоположный.
Наибольшую скорость движения на указанном отрезке времени.
Скорость движения на концах отрезка времени
V(0) = 2*0 - 3 = -3
V(4) = 2*4 - 3 = 8 - 3 = 5
Найдем производную(ускорение) функции скорости от времени
V(t) = (2t - 3) = 2
Постоянная величина производной (ускорения) говорит о том что движение равноускоренное и максимум и минимум скорости находится на концах отрезка.
Поэтому максимальноя скорость на отрезке находится в момент времени t = 4 и равна Vmax = V(4) = 5