-11 / (x-2)²≥3 Квадрат числа не может быть отрицательным, следовательно, мы имеем право умножить левую часть на знаменатель дроби в правой части, не меняя знака. -11 ≥ (x-2)² * 3 Раскрываем по формуле сокращённого умножения -11 ≥ (x²-4х+4)* 3 3x²-12х+23≤0 Находим корни уравнения 3x²-12х+23=0 Находим дискриминант D=12²-4*3*23=144-276=-132 Дискриминант отрицательный, значит неравенство не имеет решений, значит, неравенство либо справедливо при любом х, либо не имеет решений.Чтобы понять, какой из этих вариантов правда, надо подставить любое значение х в неравенство, предположим, я подставлю единицу -11/(1-2)² ≥3 -11 ≥3 Три в любом случае больше, чем любое отрицательное число. Значит уравнение не имеет решений.
Вариант решения номер два -11 /(x-2)² ≥3 Квадрат числа не может быть отрицательным, значит в дробной части неравенства при делении получится отрицательное число. Три в любом случае больше, чем любое отрицательное число. Значит неравенство не имеет решений.
1) у=-Х^2-2Х+13 это парабола т.к. старший коэфициент =-1 то ветки направлены вниз координаты вершины х=-b/2a= 2/-2=1 подставим в уравнение у=-1+2+13=14
зададим несколько точек для построения х=-5 -4-3 -2 -1 0 и так далее у=-2 5 10 13 14 13
2) у=-х-7 это прямая линия зададим 2 точки х= -5 -6 у= -2 -1
из графиков видно что чтобы прямая у=m имела с графиком ровно 2 общие точки она должна проходить через точку (-5;-2) значит m=-2 и через вершину в точке (-1;14) значит m=14 ответ m={-2;14)
Квадрат числа не может быть отрицательным, следовательно, мы имеем право умножить левую часть на знаменатель дроби в правой части, не меняя знака.
-11 ≥ (x-2)² * 3
Раскрываем по формуле сокращённого умножения
-11 ≥ (x²-4х+4)* 3
3x²-12х+23≤0
Находим корни уравнения
3x²-12х+23=0
Находим дискриминант
D=12²-4*3*23=144-276=-132
Дискриминант отрицательный, значит неравенство не имеет решений, значит, неравенство либо справедливо при любом х, либо не имеет решений.Чтобы понять, какой из этих вариантов правда, надо подставить любое значение х в неравенство, предположим, я подставлю единицу
-11/(1-2)² ≥3
-11 ≥3
Три в любом случае больше, чем любое отрицательное число. Значит уравнение не имеет решений.
Вариант решения номер два
-11 /(x-2)² ≥3
Квадрат числа не может быть отрицательным, значит в дробной части неравенства при делении получится отрицательное число. Три в любом случае больше, чем любое отрицательное число. Значит неравенство не имеет решений.
т.к. старший коэфициент =-1 то ветки направлены вниз
координаты вершины х=-b/2a= 2/-2=1 подставим в уравнение
у=-1+2+13=14
зададим несколько точек для построения
х=-5 -4-3 -2 -1 0 и так далее
у=-2 5 10 13 14 13
2) у=-х-7 это прямая линия зададим 2 точки
х= -5 -6
у= -2 -1
из графиков видно что чтобы прямая у=m имела с графиком ровно 2 общие точки она должна проходить через точку (-5;-2) значит m=-2
и через вершину в точке (-1;14) значит m=14
ответ m={-2;14)